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INTRODUCTION

The purpose of this study is to develop an expression for the

spatial covariance for the scattered radiation when a randomly rough

surface acts as a scatterer. Several properties of the covariance

suggest some of the reasons for the development of such an

expression. Some of these properties include the following:

1. The normalized covariance is the optimum test of

similarity between a pair of field points by the least-

squares criterion.

2. The covariance is the Fourier transform pair of the power

spectrum density.

3. It responds to field fluctuations.

4. It is less sensitive to inhomogeneities in the propagating

medium when compared to the intensity.

5. If the covariance is only a function of coordinate

differences, then it follows that there is a uniquely

determined fictitious incoherent source, which if placed

at infinity, would produce the same coherence across the

ensonified scatterer.

6. The correlation function obeys two Helmholtz equations

(two wave equations when the disturbance time difference

at each receiver is larger than the coherence time) since

both the field disturbance as well as the correlation

t.
.I



2

between these disturbancer propagate in the form of waves

(1, p. 532).

7. It will enable the computation of the complex degree of

coherence.
rt2!

-7- (1).+

.11  r22

where the spatial covariance is ri, - <p(r,)p*(r2)>

and the intensity is rii , i - I or 2, - <p(ri)p*(ri)>

Thus, this study presents a useful tool in the study of field 0

fluctuations, source localization, and the determination of some

physical properties of the scattering surface.

Since Issakovitch (2), Eckart (3), and Rice (4) published their

formulations of the intensity of the scattered field some 35 years

ago, a considerable number of researchers have made improvements or

discussed particulars of the two basic methods that the above-

mentioned researchers developed. The two methods are the Tangent-

Plane method (or Helmholtz-Kirchhoff diffraction integral) and the

Method of Small Perturbations. These have surface-roughness ranges_

of validity that hardly overlap.

Several alternative models have been proposed, among them the

Composite-Roughness Model (5,6,7) which in essence merges the above-

mentioned methods by applying the Kirchhoff method and the

I VP%

Q" A-a J4t". -
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perturbation method to the range in which they are valid. :his

method assumes that the height spectrum can be partitioned, a

situation which turns out to be possible in such cases as the sea-

surface spectrum. Most of the work in this area done by the

acoustics community concerns the sea surface or the sea floor which

are assumed to have near-Gaussian roughness distributions, so that

most studies involve ideal pressure-release or rigid Gaussian

surfaces. The problem of multiple scatter, realistic boundary

conditions, surface movement, etc., can make computations

exceedingly difficult so it has been customary to present these

problems somewhat isolated for the purpose of study.

At present, interest exists in the development of correlation

and higher-order moments so that inhomogeneities and fluctuations of

the field scattered by the rough surface can be studied. So far in

the acoustics literature, one finds relatively few studies on

correlation and coherence, most of them being experimental

(8,9,10,11,12). Among the theoretical, Bass and Fuks present in

their monograph (13) a comprehensive but general discussion on field

fluctuations; Clay and Kedwin (14) develop approximate expressions

for spatial and temporal correlation involving Gaussian surfaces and

include the case of a moving surface autocorrelation function.

Gulin (15,9,10) uses the Method of Small Perturbations and Parkins U.
(16) arrives at an expression for spatial and temporal correlation

using the Neumann-Pierson wave spectrum. Kinney and Clay (17) use
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the facet-ensemble method to compare with laboratory data and

Eckart's theory.

Three methods are presented in this study. The Method of Small

Perturbations (MSP), the Tangent Plane Method (TPM), and the

Composite-Roughness Model (CRM). The MSP is presented for

completeness and to emphasize its simplicity and the lack of the

need to revert to the Kirchhoff approximation. MSP is useful when

the surface features are small compared to the source wavelength.

It relies on a small parameter expansion (the roughness parameter)

of the surface to translate the boundary conditions on the rough

surface to the (flat) mean-value plane.

The TPM is presented in two different ways: the Standard Model

and the Slope-Operator Model. Both use the Kirchhoff approximation

and have the same validity range - the small source wavelength limit

- and require that the surface slope change slowly. The standard %

model begins with the Helmholtz integral and relies on an

integration-by-parts procedure in order to eliminate the dependence

of the resulting integral on the surface slope terms. The angular

dependence is expressed as a function and is taken as nearly

constant so that it can be removed from the integral. This model

4 requires the receiver angles be always very close to the specular

direction.

The Slope-Operator model begins with the first term in the

iterative solution to the double-layer potential integral. It uses

% ,'%.5' "5-
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Gaussian properties and analyticity in the surface autocorrelation

to change the order of averaging and differentiation in a systematic

way, so that the end result is an operator that when applied to the

autocorrelation provides the integral with slope corrections.

Lastly, the CRM begins with the usual Helmholtz integral. The

surface autocorrelation is split into a part corresponding to the

large-scale surface contribution to which the standard method

applies, and a part from the small-scale surface contribution on

which the MSP works well. The problem is that not all naturally

occurring surfaces can be split into two roughness regimes. Another

problem had been the choice of the cut-off surface wavenumber, but

the implementation of diffractive corrections circumvented (7)

adequately the problem and improved the model's behavior. In this

study the Fraunhofer phase approximation will be employed for the

CRM and the diffractive corrections will be implemented.

This study presents expressions for the covariance and

intensity using the Composite Roughness theory, and two formulations

of the Tangent Plane Theory. The surfaces in question are

stationary Gaussian pressure-release with either Gaussian or Pierson _0

(18) ocean spectrum. Expressions for the mirror-like surface

scatter are developed as well so that the coherent and incoherent

components may be studied separately. Table 1 provides the reader

with an aid in understanding the organization of this study. The

0

U%
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Table 1. Diagram of the organization of this study.

In parentheses is the section in which the covariance

for each model is first discussed.

METHOD OF SMALL TP CRm
PERTUBAZION TANGENT PLANE COMPOSITE-ROUGH.Ss

METHOD ~ODEL

CONVEONAL 5 CORRECTIONSI ...........L...........~(3.C.3)

STANDARD SLOPE

I UP OPEDATOR
(3.C.2.a) (3.C.2.b)

STANDARD MODEL
(INTEGRATIONI SY I
PARTS. ,BP) SLOPE-OPERATOR. Z .4

MODEL MODEL an "z
(3.A.1) (4.A.2.d)

FRAUNHOFER FRESNEL
PHASE APPROX. PHASE APPROX.

(3.3.3.a) (3.3.3.a)

GAUSSIJAN
SPEC-L'X OF GAUSSIAN SU&FACES FLAT

OCEAN (PZSON SPECTRUM)

QUArITIES COMPUTED AND DISPLAYED SCATTERING STRENGTH
COHERENCE M-AGNITUDE

5%
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tdble provides the equation numbers in parenthesis which correspond

to each model. The intensity provides information about the surface

elevation, while the covariance is more sensitive to surface

spectrum and source position.

The perturbation approach is presented in the first chapter.

The analysis illustrates the fact that this method applies to

surfaces with small crest-to-trough elevation amplitudes but poses

no restrictions to the steepness of the surface slope. Further, it

supposes that the rough surface introduces "fuzziness" to the

scattered sound beam. This is in contrast to the tangent-plane

method, which proposes that the incident wave suffers Dali-like %'

distortion once it impinges on the scatterer.

A survey of solutions to the Exterior Dirichlet Problem is

included in order to emphasize that in TPM there are several

alternatives in the formulation of the departing scattering 0

integral. The Helmholtz-Kirchhoff integral lends itself to the

integration-by-parts procedure on which the Standard Method is

based. The Double-Layer Potential Integral lends itself to the

slope-operator procedure. The latter integral leads naturally to a

recipe for the study of multiply-scattered radiation problems.

The survey suggests the TPM is a solution in the geometrical 7.i
acoustics frequency/roughness regime. Further, the Kirchhoff

approximation is required, hence the surface may have large crest-

to-trough amplitudes but gently changing slope. Lastly, the surface

U

- V ~ ~* %' ~%- ** *( ~ ~'~ , .. ..
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must be at least twice di;ferentiable and the solution to the

scattering integral must satisfy Sommerfeld's radiation conditions.

Chapters 4 and 5 illustrate the scattering strength and

coherence predictions of the Tangent-Plane models when a Gaussian,

flat surface, or the ocean surface is involved. It is shown that

near the specular direction the field is mainly determined by the

coherent component and that the incoherent contribution becomes w
significant in the field strength predictions away from the specular

direction. The scattering is better predicted by the Slope-Operator

rather than the Standard Model since the latter model mispredicts

for angles far away from the specular direction. Shown as well is

the fact that when the normal gradient a/an is approximated by a/az,

the scattering formula will only display the coherent component of

the field. This may be adequate when the surface is mildly rough

and/or the autocorrelation lengths are very large.

The Slope-Operator Model is developed using the Fresnel and

Fraunhofer phase approximations. Qualitative comparisons are made

with regard to the behavior of the model when one or the other phase

approximation is used, which show that the Fraunhofer approximation

is adequate in the farfield. The plots for scattering strength show

that for low grazing angles the Fresnel expression consistently

predicts lower energy amplitudes as compared to the Fraunhofer

expression and the Standard Model. The Fresnel phase approximation

produces expressions for intensity and covariance with real and

6V-M
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imaginary parts. The author speculates, but nevt~r proves, chat the

imaginary part is less significant in the farfield and/or when both

the autocorrelation lengths are large and grazing angles small. The

coherence plots illustrate that the Standard Model and the Slope-

Operator Model predict similar results. The phase is controlled in

the farfield by the argument k(rl-r 2 ), that is, the wavenumber times

the difference between the distances of the receivers to ensonified 4

surface. It is shown as well that the horizontal coherence is

insensitive to surface inhomogeneities when the random surface

fluctuations are directed in the vertical direction.

"

0'1

I ' '9
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CHAPTER I

PERTURBATION METHOD AND THE EXTERIOR DIRICHLET PROBLEM

A. THE METHOD OF SMALL PERTURBATION (MSP) ,4

1. The Scattered Pressure Field

The method of Small Perturbation was applied by Rayleigh (19)

to determine the field scattered by periodic surfaces and

subsequently applied by such authors as Rice (20), Mandel'shtan (21)

to slightly rough random surfaces. This technique, in its simplest

form, is included here because it forms a basis for the Composite-

Roughness Model.

Following Brekhovskikh (22) closely, the randomly rough

pressure-release surface described by z- (r) with mean value

< - f (r)dS(r) - 0 (1.1)
S

bounds the semi-infinite region 2. This region contains a source

generating a time-harmonic pressure field. For simplicity, assume

the incident field to be plane waves. Further, assume that the

total pressure at (r,z) in I satisfies

Ptotal(r,z,t)-Po(r,z,t)+p(r,z,t) z> (1.2)

• I



where P. is the presure disturbance in the absence of the rough

surface. The boundary condition

Ptotal(r, (r)-O (1.3)

is expanded in a power series about z-0. We retain only terms up to

1st order ( is small):

P total + (Ptotai,) -0 (1.4)

Substituting (1.4) in (1.2) and matching orders we obtain the

boundary condition at z-< >:

Po 0 (1.5)

(P-) (1.6)

The solution to the reduced wave equation subject to Dirichlet

boundary conditions is

i 0*r -iyz +iyo z

Po(r,z)-e (e -e (1.7)

2 2 2

where k 0 -o + Yo,

and o0 r " i, c o is the horizontal component of ko

7o. z  --7O, 70 is vertical component of ko .

.rIN
...0

.;.-%. . . . . ..-..,..-. .s,.*--. . %.
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Substituting (1.7) in (1.6) and evaluating it z-0 -s

P(r, 0)-21-oy (r)e i . (1.8)

Let A(X) be the surface spectral amplitude. It is the Fourier

Transform of (r)

- dXA(X)ei(Xr) (1.9)

Utilizing this representation of (r), we obtain

p(r',z') - 2i1o y dxA(x)ei( e+x)ri z (1.10)

where 7 - (k2-(fo+X)2)I 2  and Im(-)>0

as the final expression for the pressure at (r,z).

2. SRatial Covariance and Intensity

The scattered pressure at (r',z') is

p(r',z') - 2i7o f dx'A(x')ei( 0 +x') ' r'+i-'z' (1.11)

with -y' "[k2- (Co+ ) ]1/2

The covariance is the expectation

<PP' *> -y ff dxdx'<A(X)A*(.V')> "

ei~o.(r-r')+ilx, r-x ' . r ' )+ i (-yz - -y z }( .2)-)

e'. #112

- ~ -. .
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The range of Z and Z' are determined by considering contributions

from non-attenuating waves, for which the I's are real.

Assume the surface to be stationary so that the surface

correlation of (r)

C(r 1L) - < (rl) (r 2 )> (1.13)

depends only on the separation r, - r2 -rl.

In such a case A(X) and A*(x') are delta correlated (13, p. 43)

<AXA('>- W(X)5(X-X'), (1.14)

where

W(x) - W- fdr Cre- iX-rj
(27r) 2

- rCr)e(1)

is the spatial spectrum of roughness. I

Substituting (1.14) in (1.12) and integrating with respect

to X' ,

2

-pl* 
4 7 f dx(~ x )r.~ I (1.16)

is the covariance. When (r,z)-(r',z'), the intensity

-p* 41 0 f dXW(X) (1.17)

is obtained.S

NP
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3. Discussi i

Equation (1.10) implies that to the first approximation each

Fourier component of roughness acts as a virtual source giving rise

to its own scattered plane wave propagating in the direction (C,r),

which obeys Bragg's Law (22, p. 177): 'p

e- + X 1.8

Equation (1.16) and (1.17) show that the scatter is mainly

determined by the surface spectrum, not the height distribution, in

the regime in which this method applies. The main feature of MSP is

the translation of the boundary condition on z- (r) to z-< >-O by

means of a Taylor series expansion. This fact restricts its

applicability to wavelengths that are large compared to the

correlation length p of the surface (13, p. 82), or more precisely,

to the range

R - 2koasindg << 1 (1.19)

where R is the Rayleigh parameter

ko  is the source wavenumber

a is the rms height of the surface

g is the grazing angle of the incident wave. .,9U
.55
55
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Physically this amounts to each Lrregularity weakly distorting

the field incident on it, and that in the frequency range of

validity the roughness of the surface is shallow as seen by the

incident wave.

Two alternatives to the MSP will be presented next, one being

the popular "Tangent Plane Method" (TPM), which assumes that

reflection takes place at each point on the surface according to

geometric acoustics (the incoming wave sees a surface that very

gradually changes and reflects from the tangent plane at each point

of the surface). The problem with this method is that the Kirchhoff

approximation is needed to predict the field at the boundary. The

other model is a combination of the MSP and the Tangent Plane Method S.

and it assumes that the surface is to be considered as the

superposition of gently changing large-scale roughness with an

overriding small-scale ripple.

The MSP has been presented, for simplicity, with an incident

plane wave. However, the source could just as well generate

spherical waves and have a beam pattern. In both the Tangent Plane

method and the Composite-Roughness Models, source characterization
0

will play an important role in the following presentation, but this

need not be so in the general case (23). ',

Phenomenologically, it is interesting to note that the MSP and

the TPM differ in their prediction of the effect the scattering

S
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surface has on the incoming wave: MSP predicts that the inci'dent -*

wave becomes "fuzzy" or diffuse on reflection whereas TPM predicts a

scattered field as a superposition of sharp images of the incident

wave producing a "distorted" but well outlined incident wave. The

composite-roughness result is a combination of both effects.

B. THE EXTERIOR DIRICHLET PROBLEM

1. Statement of the Problem

The total acoustic pressure at r in a semi-infinite region X of

isotropic media will be assumed to be the point-wise superposition

Ptotal(r,t)-Po(r,t)+p(r,t), (1.20)

where Po and p are the contributions from the source at r' and the

boundary respectively (see Fig. 1). Our attention cc.lters on the

scattered field p, which in the time-harmonic case obeys

(A+k2)p(r)e-iwt - 0 in I (1.21)

the reduced wave equation, with Dirichlet boundary condition on the

randomly rough interface

p(r")-O r" e S" (1.22) '..-N

V.,. .',-I

-'N'
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and Sommerfeld's Radiation conditions (24, p. 429) I

8r-k p (r)-o (1.23)

as I rl , which guarantees no contribution from regions infinitely %

far away. This problem is known as the Exterior Dirichlet Problem.

2. Solutions-Survey

The double-layer potential integral (25, 26)

p(r)- f 0(r")n".V"(r,r")dS" r" e (1.24)
E r E

is known to be a solution. With . the portion of the surface S" "

illuminated by the source,

0(r") a (unknown) surface dipole distribution and

1(rkr)- e is the Fundamental Green's41 tr-r"I Function with

k = 
- the source wave number 'S.S-v

c

The double-layer potential with continuous density ' is a

solution to the Exterior Dirichlet Problem (1.21) (1.22), provided 0 r%

is a solution of the integral equation

2p(r) = 0(r)+2 f 4(r")n".V" (r,r")dS" when r e (1.25) -.

and r" o r

This equation, in turn, has a solution if the surface belongs .

to a class of Lyapunov surfaces (27) and if the density V is bounded

everywhere on Z. One important implication of this restriction is '-I

% %.

, 1 01%

%
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that the correlation function must be analytic, and sec.ndly the I

function (r ) describ ing the surface must be Holder continuous to'V,

(28).

Both p and 7 are unknown on the surface, but an approximate

expression for the pressure for points on the surface is

p(r) - -Po(r) r C , (1.26)

which is commonly known as the geometrical optics approximation (or

one of the Kirchhoff approximations) because it is only

approximately true for klr-r"l>>l -- the high frequency regime
9

The physical intepretation of (1.26) is that at points corresponding

to the surface, the field equals the incident pressure at those

points in the absence of the surface. Further, when r is on the

surface S", but not in Z, the pressure is zero at r. Thus

specifying that shadows be infinitely sharp.

Substituting (1.26) in (1.25) and performing the iteration

( r~ ~ 1) + 0 1o + 02 .... OM ... .-

where po(r) - - 2 Po(rEZ) r E Z
*,, II I

(r)- - 2 f 0o(rj)n,. TV (r,r,)dSj rjE E"
ZI

It ^ I II ft It It

U, Om(r) - 2 f 0m- l(rm)nmMVm (rrm)dSm r Me Em

'-U

(1.27)

0r r

~w V - % '* ~ -U ~ t~ %%UU ~ *.;,AIM~
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Retining only the first two terms in (1.27) and substituting in 7

(1.24)

p(r) - - 2 f Po(r')n".V"O(r,r")dS"
Z

.Po(r)n,-V(r,r:)d$" n".V"O(r,r")dS" (1.28)

The first order contribution is recognized as the Rayleigh

Diffraction Integral. Equation (1.28) states that the field at r is

a linear combination of n-order multiple scatter terms. The first

term represents the singly scattered contribution since the

integration over Z means that the contribution of every point r" is

summed coherently to yield the first-order contribution. The

second, that part of the disturbance at points r" in Z1, reradiates

in the direction of r" in Z, so that the second order contribution

to the pressure at r is the integral over Z of the coherent sum in Z

of the reradiation to every point r". Higher order terms in (1.28)

represent even more complicated reradiation contributions. This

method is particularly well suited for the study of multiple 0

scattering, especially since iteration and superposition are in
principle relatively easy to implement on a computer.

In principle it is also possible to formulate the solution to

(1.21 and 1.22) by the use of a Single Layer (29) or Simple Source

Distribution Integral

I<

_V NXV
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p(r) - f 0(r")'s(r,r')dS" in 2, r" E S". (1.29)

Equation (1.29) is a solution to the Exterior Dirichlet Problem

in question, provided 0 is a solution to the homogeneous integral

equation

f O(r")4s(r,r")dS" - 0 (1.30)

The task would be to find Os which is identically zero at the

randomly rough boundary and that satisfies radiation conditions. .

This makes this formulation very unattractive and will not be

discussed further.

Finally, we address the Helmholtz Integral formulation for the

scattered field

p(r) f Orrfo

p~r -f {~(~r)n .V"p(r") -p(r")n .V"O(r,r")I dS" r" E Z

(1.31)

This is the most frequent starting point for authors discussing PV%

the Tangent Plane Method. The formula may be derived using the 0

divergence theorem and Green's identities (30, p. 803; 24, p. 40).

Equation (1.31) requires that the pressure and its normal

derivative at each point of the surface be known. For a randomly -

rough surface this can only be determined approximately, for -.

example, invoking the Kirchhoff approximations,

0.

x~pp
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p(r") - - Po(r") (1.32)

n".V"p(r") - 2n".V,,Po(r") (1.33)

part of which was used in connection with the dipole layer

formulation. If these approximations are made, (1.31) is

transformed into

p(r) - 2 f (po)dS", (1.34)E .a n ".$( 

. 4

Po and 0 are the doubly differentiable incident pressure and theA

Fundamental Green's Function respectively, n" is the outward normal

of the randomly rough surface. This formulation could incorporate

multiple scattering if the full integral equation that leads to the

Kirchhoff approximations were implemented (29).

Alternatively, Oh can be chosen to be the solution of

(V2 + k2 )Oh(r,r") - - 6(r-r") (1.35) %

which vanishes at the flat surface z-0. Under this condition (1.31)%

is

p(r) - - f p(r") Oh(r,r") IdS" (1.36) %a z=
z-O

The solution of (1.36) is arrived at by first making a Taylor

series expansion for small a, the rms height of the surface, much .

like in MSP, that would translate the boundary condition on the

%,-0
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rough surface back to the surface z-O. This technique is limited to

wavelengths much greater than a but does not rely on the Kirchhoff

approximations.

3. Discussion

The previous section enumerates some of the less esoteric

formulations of the solution to the Exterior Dirichlet Problem.

Each one of these is used as a starting point for the development of

different formulations of the TPM. Equation (1.34) and the first

term of (1.28) (it is assumed that multiple scatter does not

significantly perturb the scattered field) will be developed further

in the next chapter. They both incorporate the Kirchhoff

approximations, but differ in their starting points as well as in

the evaluation of the quantity n k and the phase in the

exponential. Since Kirchhoff's approximations are invoked, -

diffraction shall be ignored. Thus, surfaces to which the Tangent

Plane Method applies may have large crest to trough differences, but

slope changes must occur very gradually. Furthermore, it is assumed

that the source sees every point on Z. Otherwise, eqs. (1.32) and

(1.26) are replaced by ,

•%J

p(r") - -S(r")Po(r") (1.37) % 

where S is a shadowing conditional probability function (31) that

depends on the source depression angle as well as the height and

S:-:

I ' 

.
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slopes of the surface. It is clear that this factor becomes more

important for smaller source depression angles, but in this work we

shall assume it is always equal to unity.

-C7

%C*p

%'i.
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CHAPTER II

THE TANGENT PLANE METHOD

A. THE TANGENT PLANE METHOD

1. Preliminary

The starting point is the Rayleigh diffraction integral (1.28)

and the Helmholtz Integral result (1.34)

AS
p(rI) - - 2 f Po(r")n".V"0(r,,r')dS" and (2.1)

p(r1 ) - 2 f ... (Po~r")0(r1,r")J dS" .(2.2)

As illustrated in Figure 1, the source at r' generates

spherically spreading waves, limited by the beam function D":

ikR'Dot

where R' - Ir'+r"I

he 1 Fu rameta GrensFucio~nI .(2.4

0( .)e ikl rl-r" e ik__ (2 .4) t'-""
1 r r ) 41ir I r , ro 4

and has a gradient with normal projection

ni V"O(rr") - in *R 1 (1. -+1 0(r l ,r") where R- r1 -r"

(2.5)

0

% h
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-P
Assume that kRj >> 1 t.o that expression (2.5) can be approximated

ni V"i(r1 ,r') ;- in".k1 0(r1 ,r") (2.6)

kR1
with k.1 - R

2.* The Source Illumination Function

The use of most realistic beam patterns D in equation (2.3)

will make the evaluation of (2.1) extremely difficult. Two

reasonable approximations for the main lobe of highly directional

sources are the aperture type and the Gaussian beam pattern, both

absent of sidelobes. Here we assume a Gaussian source with

directivity function (32, P. 198)

D" exp V2 + U 2  (2.7)

wher U ~ 01o 10e 1/2 r'tan(2)

wher U 3sinO is the semimajor axis

(20lg e 1/2
- ~.o10e ) r'tan(l) is the semiminor axis

Sis the half-power beamwidth r.

6 is the source depression angle k--

so that the surface area A illuminated by the source is simply given%

by

I
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J-_

A - f dx ,f dy e -U2'UV (2.8)

Further, the source is assumed to have a narrow beamwidth so that

the approximations

{R' - r'

R- r, are valid. (2.9)

Another convenient change that can be made on (2.1) by this

choice of D is to change the limits of integration so that the

integration is performed over the whole surface. It is this a.,'

assumption that makes it evident that the choice of source

beampattern plays an important role in the development presented

here.

3. Fraunhofer and Fresnel Phase Approximations

Both 0 and Po (ignoring the source function D) in (2.3) and

(2.4) represent spherically spreading waves. The phase in (2.3) and

(2.4) is found to be (see Fig. 2)

ikR' - ik[x''2 + (r'cosO+y") 2 + (r'sinO-r)2]l
/ 2

ikR- ik[rjcosOScos4j-x")2 + (rjcosOjsin4j-y")2 +

(rtsinSi ¢)]I' (2.10)

These can be approximated, retaining the first two terms of the

binomial expansion, by J,

N

IN

%
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ikR1 - ik r'+y"cos8- "'sin8 + 1 n2+yn )  (2.11)

and

ikR -L ik r1 -(cos81cos~x,+cosOsin~y"+sin0l1 ,) + -l(x2+y" )1.

(2.12)

In the future these two phase appear added

ik(R*+R) ikfr1+r'+ajx"+Pjy"-7j1 ") + ikP1 (x"
2+y"2), (2.13) 6

where a - - " cosOJcosO1

61 - . coselsino1

01 - (cosO-61)

71- sin# + sinG1  ON

rj+r'

P 2r1 r'

This expansion is valid when r'-2 {x" 2+y"2+2r'(y"cosO- "sin8)) m.

< 1 and r1
2 (x'

2+y"
2 -2r (C x"+6 y "+sinO ")) < 1, which physically

implies that the source and receivers are far enough so that the ,,_

largest dimension of the insonified area is still smaller than the

source/receiver-to-surface distance. An alternative to the binomial

expansion is the replacement of R+R' by a power series in r" about . 4

the origin (33,34). The binomial expansion is admittedly poorer -."1
than the series expansion, but it is considerably easier to

implement. r..

When the source is far away so that kR' >> 1 then the wave

fronts of Po are locally nearly plane and Po can be approximated

LI

-- S .--.. S..%°.S
. - -_ , -

- ' " m " # w r , % ' ' ,*-' % % . , .% . *. . % * " . . % ° - . " -. .. . -,
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Deik' (r+r")
PO" R' (2.14)

with k' - k

Similarly 4 can be approximated if kRI >> 1 so that

. - 1 eiki (r -r")
4wRi 

(2.15)

When the phases of (2.14) and (2.15) are combined, the term in

square brackets in (2.13) is obtained. This is labeled the

Fraunhofer phase approximation and physically suggests the

assumptions made on the shape of the wavefronts. When the

approximations in (2.14) and (2.15) are not made, i.e., the

wavefronts are allowed to have some curvature, then at least second

order terms must be included. When second order terms are retained,

as in (2.13), the Fresnel phase approximation is being made. This

approximation somewhat complicates computations of the moments of

the pressure and shall only be given some attention here when the i.

Slope-Operator Model is discussed. -

Before proceeding, (2.1) and (2.2) are restated incorporating

the changes discussed so far:

,%

p(r 1 ) r +ik(e x"+Pj5y"-- 1  "+P1 [x" 2 +y" 2 ])
2ffirjr I dS'n".-kDe

(2.16)

%.,1
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ik(r,+r') ^-
p(r 2i rI dS"n". (k-k ) De '''' - ' ' (2.17) '._,

with ~x + (. y
with n" x" X^ + 

.

can be considered. Equation (2.17) is the Helmholtz integral result S

and has the Fraunhofer phase approximation. .,

The evaluation of (2.1 and 2.2) shall be performed in two

different ways. One approach shall be labeled "Standard Model" and SO

starts with (2.17). The "Slope Operator Model" uses (2.16) first,

e e with Fraunhofer, and later with the Fresnel phase approximation.

The latter model does not make a large grazing angle approximation

eevainiling the noralnd 2.)salb eromdi w

as will be the need in the Standard Model in order to permit the

evaluation involving the normal n". '

B. DERIVATION OF THE INSTANTANEOUS AND MEAN SCATTERED PRESSURE _

1. Standard Method

a. Development

This approach has been preserted with slight variants a great ,

many times. Among the earliest researchers to apply it to the

computation of intensity are Issakovitch (2), Eckart (3), and

S

Z- .0-_0Z%
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'V

Brekhovskik'i (35). Here we follow the approach presented by Tolstoy

* and Clay (32) and use the geometry of Figure 2.

Using the Fraunhofer approximation, the difference in the wave-

vectors is

k~ (k'-k 1) 06- 1x + (cosO-S 1)y - Yjz (2.18)

with el - coso1 coso 1

1- cosolsino,

,- sinO + sin91 ..

so that

p(r1 ) - e i' k I~ dy" 'f dx"D"

(a1  yi (2.19)

with a. --

P1- (cosO6 1 )

are respectively partials with respect to x"

and y" of ~

The first two terms can be simplified using integration by parts.

The first term gives
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k fdx*~o:DIe~1 (e ik'xdx") -- Del ik (a x" - Y1 "

2
dx"D a1 _ik(a x"--v 1 ") + f codx" aD" ik(ctx"-- 1 '

-0 -vi -CI I-y1  axis

Substituting the explicit form of andxiivstefolwn

result:

k f dx"cD"e i1a (e' ik1'.d") 0

c0 Dsa2  ik(,x- 0 dx"x"D"a
+ k f* dx" 1e ik-x~v~)2k f 1-U ekax-- 1 "

71 is~ -- y 1 
2

-* -G

-F(U)+G(U) (2.21)

For large kU, G(U) falls off faster than F(U). By Schwarz

inequality

IG(U)I 1 %

IF(U)I kU

so that G(U) is negligible if kU >> 1 is enforced. The procedure

is used to perform the y" integration, yielding

2 2 2

p~r ) iik(r'+r,) a, o (C' + + v)4 p~ ~ 2nr r k f dy" f dx" D" +YIkaj"Py"-j"
sr-0o -co9

(2.22)se

*4 provided that kV >> 1 as well. '

"'Is
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Finally, substituting (2.18) in (2.22) and imposing the

restriction that changes in the incident and receiver grazing angles

be restricted to a small range so that the angular dependence may be

removed from the integral, the final result is

ik(r'+rl
p(r) - ik 2irrr' fl(e) ff D eik( 1x+Y71 )dx"dy"

(2.23) - 4

where

l+sin sin 1 -cos cos8 sin j
f1 (e) - sinO+sini (2.24)

(2.23) is valid for angles in the neighborhood of the specular

direction and kU,kV >> 1.

If the surface is flat "-O and the scattered pressure from a

flat pressure-release surface or a "mirror" is obtained:

ikeik(r'+r C

PM(rl) - 27rr' fl(e) ff D"e ik(x"+ OY"dx"dy" (2.25)

b. The Mean Scattered Pressure .-

The surfaces to be dealt with will be random stationary, '.

described by "(x",y"). "(x",y") is a sample of a stochastic process

and the scattered pressure is therefore a random quantity. The N

ensemble average or "mean" pressure is d .

ik(rl+rl) e <2p r,>rik f (8) f DYe k(al x"+Rly") <e- ik-yj >dx~tdy"V.. €'.

2rrir

(2.26)



35

The interchange between the expectation and integrations is possible

when there is uniform convergence. The expression <e' ikri "> is

recognized as the characteristic function of the random quantity

f" (x" ,y")

i- -ik-y l 2.7
<e-i7"> - f d "w( ")e 1 (2.27)

where w( ") is the probability density function of heights (". As a

special case, consider the Gaussian probability function

( ,, e " " 2 / 2 a 2

(2.28) s

2 a2  '

Substituting (2.28) in (2.27) we obtain

<e- ik yl" > - e- g/2 (2.29)

where g is the roughness parameter, defined(*) as g - k2 7
2 2

The mean scattered pressure for a Gaussian distributed surface is

thus %NP

g/2?

<p(r-)> e pM (2.30)

Readers familiar with acoustics literature that deals with

scatterin from rough surfaces will recognize the quantity k
2
7
2 2

as defined by 9
2  

In this study the square is omitted so that g 0

k
2 2 2 .

%
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The factor e -g/2 is proportional to the degree of coherence in the

scattered radiation. It tends to one for mirror surfaces and to zero

as the roughness increases. It is worth noting that (2.30) implies

that the average pressure is independent of the spectral composition

of the surface. '-

2. Slope-Oerator Model %

The slope operator itself will be presented in the context of

higher order computations. Described here is the derivation of the

field using Rayleigh's diffraction formula. The result presented here

will be used later when the operator is derived. This approach A
appears a few times in the acoustics literature, notably in Welton's

report (25), as well as in Boyd and Deavenport's paper (36).

a. Development $
The dot product in eq. (2.16) has components

Ak
(n"-k1 )i - k (rjej.x") (2.31)

-,'
(nl".k 1)j k -r5 1 y) (2.32)

Ri y

A0
It k(n" .k)z - (r sin8j- '")(-l) (2.33) %ii

Let 0" - x"+Py"-71"+P1 x"2+y "2 ] -W

Equation (2.16) is therefore

%4%

0

%, %
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16.

ik(r 1+r' k d fdy,, D-e ik ' ' P"pr)_e k Ye%"

p.r f dx fdy'

21rir, r R~ %%

x ( (rjej1-x") 'x +(r16s -y") Y- (rl sin01 - ") } (2.34)

Rearranging

ik(rl+r')k ID"e ikw " "-
p(r) - 2ir ff dx"dy" (R1I +6 sine1 )

-Cc , 1y

- ff dx-dy" e ikb" x r (2.35)

-00 1i 1

The second term can be ignored if the beam is sufficiently narrow so

that x"<<r and y"<<rl. Further, note that this term is of order r,

smaller than the first term. Thus,

eik(ri +r' )kJr " "kV'
p(r 1 ) - e i Dre ir " (Cx +6 -sindl)dx"dy". (2.36)2wir r' o Xy,

The pressure reflected by a plane pressure-release surface is

obtained by letting approach zero:

ikeik(r l+r')sinO ik(ajx"+fiy"+Pj[x"2+y '2 ] )

PM(rj) - 27rr r n De -i k

(2.37)
?..5

In the farfield the Fraunhofer approximation applies, thus

P1 [x"
2+y" 2]-0. Attention to the matter of phase approximations shall

be left to later sections.

P .%"

1%%
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b. The Mean Scattered Pressure

Again, assume uniform convergence so that the expectation and

spatial integration operations may be exchanged. Thus,

ikeik(ri+r') - j xd2

x ikY1 (kax+6y+P["+"

When ~"is statistically stationary then the average can be

separated from the integrations in x" and y" (25)

<pr )> 2 ~ ' (I D6iS e i ( - + y +  *x=Y"

-- <e-i 1 - ! J >ddM (2.39)
sine1  sin "a

For the special case of Gaussian random process with zero mean

height and slopes, (2.39) yields W

<p(r)> e- g/2pM (2.40)

as before.

3. Discussio

So far the matter of evaluating the dot product involving n"

has been illustrated. The results in sections 1 and 2 differ in the

evaluation of the dot product because the integrals were different to 0

begin with. These discrepancies are apparent when comparing (2.26)

and (2.38) as well as the plane pressure release results.

40
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Some authors choo-e to approximate the average of the random
A A

vector n" by the z coordinate unit vector (3) when the slopes are

gently changing and have zero mean value on surfaces for which the

Tangent Plane Method applies. The slope corrections are increasingly

important at lower grazing angles, far from the specular direction,

and/or when the height surface spectrum content is high. In the

Standard approach the approximation is reasonable since the model only

applies to the neighborhood of the specular direction, but it is a

severe restriction for the Slope-Operator Model since it is valid for

a larger range of grazing angles and incorporates slope corrections. 0

'-a

4r

r 
L

%

1'' 1
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CHAPTER III

SPATIAL COVARIANCE AND INTENSITY

The general expressions for covariance <p(rl)p*(r 2)> and

intensity <p(r)p*(r)> for the scattered pressure involving surfaces S

with stationary Gaussian height distributions will be presented using

the Standard Slope-Operator and Composite-Roughness models.

A. STANDARD MODEL

1. Formulation

Using (2.23) with (2.24), the pressure at r2 is

ikeik(r'+r2) 00p r ) -f2 (E)ffD , ,. e .x , . ..p (r 2) 27rr' r 2  -~ dccd'

(3.1)

l+sin0sin82 -cos8cos82 sin02
f 2 (E) - sin+sin2 (3.2) ,.

Hence, the spatial covariance is "/.

k2f1 (8)f2 (8)eik(r
l -r2)

<P(rl)P*(r2)- 4ir2r 2 rl r2  f D D' x.dy'

_o ~ ~ ~ ~ fff D01Y -02..'''- - •

ik(x- " x + Y " 2 ' .e k( 1 2 .2 .. )dx, dy, dx... dy''. >.-"

(3.3)

%.
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As usual < > means ensemble average and *means conjugate. For

brevity the symbol r,2 shall replace <p(r1 )P*(r2)>, the covariance,

and r11 or r22 for the intensity at r, and r2 respectively.

Expediency in computations is improved by changing coordinates to

center-of-mass and difference coordinates. Let

- x''+x.,' Y-+y.
2 y2

and z

Thus rjL - xi+yj

R.- xi+yj S

O(X' ' ,x. ' (y' ' y.. b

Since 1-land Ilthen
8(x,x) a(y,y)

dx'' dy' 'dx.'' dy''- dxdxdydy S,

Let dr, - dxdy

0
dRI - dxdy

A'Z
Finally, let a - 2 -

a- aZ1-a 2  0 -0

%

-%
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so that s w ari+Oj

S - ari+,Oj

%

Assuming uniform convergence, the expectation is taken inside the-"P

integral in (3.3). We adopt the changes in coordinates and notation

to get

k2f1e() f2 (9) eik(rl-r2) - ikCO~ 1 s

r12 " 4i2r'2rlr 2  f dr 1 f dRi DDeik(RI's+rl's)

X <e~ i ( Y  ' '  > (3.4) '

2 2
where D- exp(-2[x  + ]}j)

U2  V2 ".

D - exp(- _+
U2  V2

S~ 
%..>

The expression in angular brackets is recognized as the •

characteristic function of the bivariate probability distribution 
%

function w of the surface, defined as

-
-- m<. ~<e - > f d['' f d ° ... [''. '' ) e " ..

(3.5)

* 
0

-S 
•

'4%

% ,

PO

.... ... . - -.- -..- . - ",- -." ,.-",. "."". ." ." -" -',',, ",+ " "-"- "-' '""- " .>> .''"V -"""; -'"v"''"".'"%- -5 r, .
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Since it is assumed that the surface is 0ussian in distribution,

homogeneous and stationary, the characteristic is computed by first

expanding (3.5) in a Maclaurin series: . ,"

_Y 1 2...2+,-y<r 2 2 1!

S

+ _ [ 'y 4 -4-yy -Y 2 9'+6_12y2. 2 52 4-f -y3y. 3+_y y.. 4] ... >.
4
! 1 3 2 2 2..3 3 4 , 4

(3.6)

Following this, the expectation is computed term by term: S

+ i ( 3-y ' a4 - '127)>a- 1 -y (7 a-2-y 1 2 2aC+ )-y a

k! ' 1 2 4 1  2 4 "4

2 2 2, 2,,
71 - -k2a2 71+Y;k0 2 C + + Y 2

e ( 2"72 2-f 17"C+ 2 2y 7

2 2

'Y + y

-e 2 2 (3.7) 5

where G - k 2a271Y 2 . If 7 1-7 2 then G-g defined previously.

a - I <T 2(r1 )> is the rms height 0

C - C(x,y) is the surface autocorrelation. %

'S'S% •.","-",• * . ... ;, . :.. "- ' .. ,",, 5 S",. ., , .. X '". /."- "",,' ,- .e," ,",
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Substituting (3.7) in (3.4) .% ,

r ___e________ e ik(rl-s) GC(r..)

12 41r 2r#2rlr, rD

-~~ ikR -s

f dRiDeikRS (3.8)

with r

The integration in R, can be performed. From integral tables (37, p.

65. 6A) .?.

00 ik(RI-s) k_ ~(2U2+fl2V2)
f dR.1 De A e 8(3.9) 25

since A- iUV

Thus%

k
2

2 ~ik(r,-r 2) rF 8 aU±V 2

Ak f 1 (8) f 2 (e)e e e "
12 8W2r' 2r1 r2

000

-0 (3.10) . 5

2. Surface Autocorrelation

a. Gaussian Autocorrelation

The autocorrelation in this case is known to be (38)

40

1 ' .
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4YI - -

C(x,y) exp 2  2  (3.11)

where Lj, L2 are the surface autocorrelation lengths e

The exponent involving the autocorrelation is expanded in a

series

GC G_ cm "
e E- i (3.12)

m-0

and substituted in (3.10). The summation and integration _

operations can be interchanged, provided the series is absolutely

convergent, so that

-r- (C2U2+,82V
2 ) o O m M.' "

Ak2fi(9 )f2 (e)eik(rl
"r2) e  8V G

12 8rr' 2 r r2  M-o

f drDC e ikr-)(3.13) S,.

Finally, the integration with respect to ri is performed S

k2_ M +M 2

dr±cmik(ri-s) 2A " 2
2O A ] "S'

2 0

J' d r D e iMr s e :. .,

M- JI+2U~m/L N1 -

M2  Jl+2V
2m/L2 N2 -V (3.14) ,S.

M, and M2 are the positive roots.

0
'S."Moe

, OP
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The covariance is therefore

8 % %*

r -A 2k2 f1 (f 2 eeik(r,-r2)e 28(U+3V)

I (E) 22( )
12(

Nn N
(,m e 2

m Z0 ! M 2  (3.15)

We shall call the rn-a term the coherent component. It is equal to

A~k~f- ij±U (a2+42)+V2(P2+402) +ik(r ) -r

- ~~1 (E))f 2 (e) e e
12 47 rP

(3.16)

The same result is obtained using (2.25) and (2.40), calculating0

<p(rl)>M<:(r2)>A: 122Th:_

A2k2f,(e8f(eke

12 - 47r 2 r' 2 rr 2

(3.17)

Consequently, (3.16) can be re-expressed:

r o <p(rl)p*(r ~e~ (3. 18)

12 coh 2)>M

01

- *:~~' ~ .~ % %~A ' ' ~ ~ A
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so that the degree of coherence can be measured 
by e-, and (3.15) %--F-

is expressed in terms of the coherent and incoherent components

[N 2

r - r -e -r ( e (3.19)12 12M M! MAM

with a factor A - exp( _(U2+-2V2

20

The intensity is obtained from (3.19) when r1 -r2 . The few

changes that occur in writing the intensity expression are worth

enumerating, since they will be invoked a few times throughout this 'p |

study:

r - g - r

.g

0o - coso-6

from the above, fl(e)-f 2 (e) and the intensity at r

2 N]21 .
2 +

'III,

Gr eG 2jr - l-'IA ri m. M,,2i I MM MAM-1-

with N, -EU N2 - (cos9-6)V A - e 2  S( U+(cosO-6)2V2 ) }

2 U 2U o+Vs 2] 
'-,".

A2k2f2(E)e'j ~ 2 2 vIand M 4(rr) . (3.20)

S1

'I. . / w w w " ww : 
"

","_' _ _L_" , ."-i ,-
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I 11Mresembles the intensity scattered by a mirror-like surface.

In the limit, when U and V approach zero, the expression given above P

equals radiation scattered by an infinite plane surface in the far

field -- see Chapter 4. The first term in (3.20) is the coherent

component of the intensity: Jb

r 1coh r1M .21)-

2. Non-Gaussian Surface Autocorrelation

a. Slightly Rough Surface: or low frequency case,
.1P

corresponds to GC<<I. The exponent involving G in (3.10) is expanded

of

in a series

k2 (c22+6V

L Ak2f (e)f (e)eik(rl-r2)e
' e - ( U2+f2V2 )

82r2r' 2 rlr 2  %-0

x f dr±Deik(r-s)l+GC+ 2 G2C2... (3.22)

The first term is familiar to us, since it is the coherent term

that appears in (3.16). We shall be interested in the first two 0

terms in (3.22). What remains therefore, is the computation of the

first term in the incoherent part of the covariance

40

f dr±Deik(ri-s )GC(r) (3.23)

-- S

d

5...

" . . .. . . .". . . .* " '.'' ' ." "' " " ' ' . *""
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C~~~~~r.J 2 X W( ) x

where C(r) 2ra f

and W is the two-dimensional surface spectrum and the cartesian

surface wavevector is

x - x i+x),J
J - ° °° o

Again, uniform convergence allows the integration with respect to rj

be performed first

dX GW(Y) dr±Deik(ri's)C(r±) - 2AG dX dx W(X Ixy)-.O 27ra" 7 -. COx " .

2 [(ka+X. )2U2+(k6+XY )2V2 (3.24)
e

Substituting (3.24) and (3.16) into (3.22) we obtain

r, r
12LF 12coh %' %.

ik~rl-.) r 8(Q2U2+32V2)
GA2k2fi(e)fz(e)eik(rl r2 )e e I

+ 87r 3 a2 r1 rr 2  fjf dX,,dx W (X,x)

2'(ka+X.) 2U2+(kP+xy)2V2]

e (3.25)

For the intensity, again we let r,-r.-r and (3.25) transforms to %

-~~~~ r AgC2() "~, [(ka-sX) 2U2 (kf3+XY) 2V2 1

r A~k f2 (e))e 2 1'"
,

11LF licoh 8732(r r)2 ,fdXydXyW(x.,xy)e

(3.26)

%

-'%V4-~

V.. .~'
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b. Very Rough Surface: or high frequenc-, limit is

applicable when GC>>l. The integral in (3.10) can be evaluated after V

approximating C(r1 ) by a power series about the origin and using

saddlepoint integration.

C(x,y)- C(O,O)+xdC(O.0) C(O.O) lx2
a
2 C(O.0) ly=2 2C(O.0) %

ax +Y ay 2 ax2  
+ 2 ay2

a2 c(O'Oi

+ xy . . . (3.27)
axay

The saddle point is at the origin, the value of C(0,0) is one and the

first order terms are zero. The surface has symmetry in x,y so that

the second order cross term is zero. Impose the restriction that the

surface must have at least second order derivatives. Thus

1 I X22 1 '+y 2Q C ,.", ' "

C(xy) 1 + 2 aX 0 ay2 OO) (3.28) - .-

-F+C (T° "Tlx2-Tzy2)

and e -P+GC -e (3.29) %

1 2where T-

a2C(o.0)

a2C(0.0)
T2 -.. 3.2

y2,' ,0

. .. .,. - , " , - ,, , ' ' .. ,. ", ,, " " ' -*,S . ., . S. 4* 55- " 4. 5 " , " . - ". . -
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"-U

_ubstituting (3.29) in (3.10) and integrating yields F,

A 2k~f1 (O)f 2 (e)eik(rl -r2 ) SA,

r 1 2 H F 4 1 2r ' 2r r , B1  B 2

k-2 2 _
[U2(a+4a2/B)+V2(#2+4f/B 2 )] 1 (3.30) ,.'.

/B2) 2TX e e

for covariance,

where BI - Jl-GT1U
2  B2 - /lGT2V2.

Note that T1 and T2 are nagative, B1 and B2 are positive roots.

For intensity (3.30) gives

k2_Z 2 +-22
2 -[ ( /B 2) P /B2 V21A2k 2f2 (e)e 2_

r" (3.31), .,
11HF 47 2 (r'r)2 B I 2  (3.31)

B. THE SLOPE-OPERATOR MODEL

1. Formulation

This model shall be developed using both the Fresnel and

Frauhofer approximation. Firstly, using (2.36) the pressure at some

point r2 is derived

keik(r2+r ')k e o ik O' '.. ..
p(r2 ) -2fir'r 2  ff D'. e (C2 ''+62 .- sin62)dx. dy..

(3.32) %.

Multiplying (2.36) by the complex conjugate of (3.32) yields

,, e

, , -. .w ,.u._- .*
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P(rk)p*(r-)- 4 r,-r) o Db b

4w2r'2r~r2

× [e x+6 y -sinej][ C2 x  +62 -sin82 ]dx,'dy,,dx, ,dy,,

(3.33)

and the expectation of (3,33), becomes ,

k2e ik(rl-rZ) k0 -0<p(rr)p*(rr ) >  - <, r r 2  -_ ''e'

[ej X +61 y -sinB1 ][ E2 "x +62 "y -sin02 ]>dx' 'dy' 'dx'' 'dy''

( 3 .3 4 ) .% -if

The random quantity is in the phase, therefore in the center-of-

mass and difference coordinates

_.P
<eik0,-D.. -> e irjSR- < e> )

[k (x2+v2 + x2+y2] + p+(xy+xy) .
e 4(3.35)

where P+ - P1+P2  P P1 -P2

0
The first two exponentials are the familiar Fraunhofer

approximation and characteristic function. The third term is the

correction necessary so that the Fresnel phase approximation can be • ]

presented. This term is the first in the expansion to show coupling * .i

among the orthogonal coordinates.

-?if ' ,=*: "

-i. .
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2. The Slope-Operator

Welton (25) and others (39,40) apply a theorem of mathematical.

statistics (41, p. 68) that postulates

a <e- >. -ib < _- eb> (3.36) .

aq aq

where z-z(q), provided the first- and second-order derivative of the

autocovariance exist.

Thus, '

X ikyj ax-

e k2 ~~17 2 [X >
(3.37)

* etc.

Application of this theorem allows expressing the averaged quantity

in (3.34) as

e 4kP y2++x+) e ik[r.,s+RI-s] T<e - ik(-yj1  -y 2  .. )

(3.38)

where the Slope-Operator is defined as

_N.~~~~C -0 C. 0 2
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T(x'' ,x''' ,y'' ,y''')-sinO1sinO2+ k Tz{[E1z28X,' x' +

2~ k2 --- 1f Xx

+6162 y ax''ay' + 2 ax'''+6y' -+ay-' ay..+66 jx'y' e x. y'

+ ik [-fsinOe C E---+ 62 )--- 2 sinO24 " ---+ 61

(3.39)

in the old coordinates. In the new coordinates h

a2
T(x,y)-sinelsin#2- k2 Y1 .y2 {[E1EX2 + 1647Y2 +(fl6 2 +f2 6l)~1

+ik [7ls inei1( e2ax + U2 y4]7 2 sine( 1 a +64- ]} .a (3.40)

Incorporating all these changes, as well as replacing the %

characteristic by eq. (3.7), transforms (3.34) into

ikrIr7 -rP( +X2+y2)+p-kXy+Xy)I

keik(r -r)e dri  dR DDe ik

12 4w2 r' 2 rlr 2  -C

ik(ri" s+Rl• s) G~j

e TeGC(r±) (3.41)

The first exponential within the integral is identically unity

when the Fraunhofer phase approximation is discussed. Since T is an S

operator in r, then the integration with respect to R, can be

performed using the result from (3.9)
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il,-2 - 8b
F Ak2eik(rl r2)ee 82 s -

r2 - 2r'2 71- 2  f dr, Deikr± STeGC(rl)

(3.42)

for the Fraunhofer approximation case. Henceforth the superscript

Fh indicates Fraunhofer and the superscript Fn indicates the Fresnel

result.

The Fresnel result is

2+

kUa,6 2 kU2 Pa .22 =

Fn Ak2eik(rl-r2)e-re 
2 Q 2Q2  $ 1

12 - 272r 2r 1r2 W1  ._

C ik[P"(4 )+P+xy] ikr. SseGC(r±) (3.43)x f drDe e T

with Q, - 2-ikPU 2  Q2 "2-ikPV 2

"-"'a"

W 4Q2 Q2 +(kUVP+)2 all positive roots

3. Surface Autocorrelation

3.1 Surface with Gaussian Autocorrelation

The autocorrelation for this case appears in (3.11) and the

result of the slope operator acting on (3.12) is

0

. • .% .

r , ., ..-, .. .- -. ..- --, .' ..- ..- --v .: , ,. ., .- --. . .. , .. -- ., -,- .' .", '2 - ,- " '. -, ' '- -- , -' . -, .-'v , r .,. ' ,. ..'v .,- ,' -QS .



56,,T , , , ++, +, U. , + ,++;, {:4r, I ,I+.. ,,.,

T C+++ G!m m  () m! "4a2 C2 [ E x2+6 1 62 g7y2+(E16 2 +C 2 6 )12 2xy
mn-o mn-a ,,

+2m If I z 2 +616 2 2 2+ik 1sinel(e21x+62 22 y)+7zsin02 (f121x+612zy))

+k2 7 1-2 sin#, sine2  k 271721

where 21- L 22 " (3.44) 5
1 L 2  L 2

1 2

The integration with respect to rL is performed after exchanging

the integration and summation operations in (3.42) and (3.43) and--

incorporating the results of (3.44): V. -

F1 H .G e 4 A, A2  k2 n
12 72 sin n 1. ,%n

+2rn~e1E2 22 +52 62 2 A2e f ~ + A

-k-y sin siO 2E 1 e 26+22

+ 2 m Mf f i Z 1x + 6 1 6 z2 2 2 A l A 2 1

2 Al A2

2 2

k+ & 1 2 ( 1 2 6 2 '2% ,
A 12 2 k -2A)+ (k2 2A2)

1 2 1 2AA
2

. 4l

(3.45) 

.5'.'

%I
L .," V-''+ . .. ,p ._ . . + ++ ,+ .,- , .. . . ,,, ++ ,,+ +.,.,+,e.1,
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k2 [C2U +O V"
ik(r1 -r2 ) -r 8- [ U

where H. Ae e e r r- ~81r ' 2 r , r 2 -fl r 2 -%-

and A, 1 ml A2  +1

for the Fraunhofer case. For the Fresnel approximation the same

computation gives

( 2 al +a2a2+ikP~aB)

0 _ m xp-k 4ala 2+k
2p2  if

F 12 hc Z M! k 2 Y1 72 sinO sin9 2F -hcXm-o j4ala 2 +kp2 1
+r+

+m[ c2 (-y sin#1 +e 1 7 2 sinO2 )( -)-2ik(6 2-Y1sinO 1+61-y2 sin 2 ) 4Na, a 2- a z

2a
+2e F 1 zR+26i6 2 1 P-N:-

-a2  'a-2 + a 4a'2  [2b2 a'

2 2

-r .1.

-ik(E.51 +E261)...I 1 i 222 ]J+612[b 1}

Ia, a  2 l a'2 +6162 12 b +2]W6

(3.46)

k 2+( kVB 2 kU2P+

with h c - Akeikrl-r )e -r e '
2Q  2QW i2Q 2)2

irr '2 r, r2 W, k
2 1 72

LOA-%
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Q 2 Q2 k2

a1  2L ) + M~1  a 2  (2 (;) + M12  a' -a 2 + 4a

and b- (--2iko)
2 2 a,

The coherent component in either approximation is

r 'J - r j e -r j-Fh or En (3.47)
12 coh 12 M 'a-

and the covariance from a mirror-like surface is

- 8 ~u~+4Ct2)+V2(0+402)j ,,
8a ikIr-r2)

A~k2e e 1 2 sin 1 sinO2
r F 41r 2 rir 2 r 1

2

(3.48)

for the Fraunhofer case, obtained by taking the m-0 term from (3.45)

and letting a and L1 ,L2 approach zero and infinity, respectively.

For the Fresnel approximation we use (3.46) and perform the identical

procedure

k~a2 kVB 2 k 2 paC 2
-i2Q

A2k2eik(rl -r) 2Qp2,, 1 1

r12 M 
?.e

7r2rrr2W J(QQ)2+(2UXkP+)2

e-k2 [(;Q2 u)2+ QJV)2+ikaOU2V2]siO

Ir2 r~rzr' 
2WIM(1 Q2 )2+(2J~J1P+)2

0

(349
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To get the intensity we let r, equal to r2 , (3.45) and (3.46) for the

Fraunhofer case,

k2 ,2 (cos-6)
2

r -H I  r- e "-A
2

111L
mn-o ,Aj A2

Al A02 k27 2sin26l+2m{E22+6222+k2Ysin01 [k~ --- .2 2(cs-6

2 6222 2k2 1 2
+2( _A (k 2 -2A,)+ *A (k2 (cOs-6) 2 -2A2 )- cs(6"6)621 JO

1 2

- (3.50)

Ae- g
with HI - 8w(rr)272

and

02al +,2 a2+ikPaO

" Fnexp{k[ -"
a. P -h m! _____________ tk2-ysin2  ,-.''

F4a a +k2p2 a
r"_. Z 1 2 (k 2s'n%

M!!
M-0

2k__ Pb - b 2

+r[ _-ysinO1  . ).4ikSysinO122 b+ 2c1+262121
al a2  a2

2[ 2 ".","

-2m[ --  b- (3.51)
2 "

a a 4a [2.2"a.]
1 2 2

.
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-%%

I 2(ab 2b2+a' 2b2+a'
-2ikc6 -2 ab P 2 ))62 2_[

a a$
2 2 2

11

with hI  Ae- V___

lr2 (r' r) 2jI6+(kUVP) 2 2 '.[!

1and a 1_2_---2 u +M0

1i k 2  1 Pak2

a 2 - + M 2  a' - a 2 + ---- b- (---ik )
4a2 2a1  • S

with p- r'+r
r'r

Again, the coherent component of the intensity is

k --
r

F1 1 c o h r e ( 3 5 2

k 2 [ 2 2 2 ]-.

wih r Fh A2k2e 229,Fwt M 47r2 (r'r)2  sin (3.53)

11

an__n !~sn9ex -k
2 . 2 (aU) 2 +2 (BV) 2 + k(UV. 2 ]::. '

M2 (r'r)2 [16+(kPUV)2] [I+(kPUV) 2 ] '..S.

(3.54)

........ .- ,.. .- ..- .

t . -% .1
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the covariance can be expressed in terms of its coherent and

incoherent component as

,,Fh A2k2e- 8 U 2 (o 2+4 2)+V 2 (j 2 44 2)] eik(r-r 2 )-r i. 6 . 08
12 41r'e rir 2

*k k ,2 a~2

me___2__Go G me 4 Al A

2Ak2 71 7 2  sin61sin82  inE1 !L

(3.55)

where the argument in square brackets [Iis that of (3.45).

Similarly, the intensity is

kt2 2+V2(oO6)2]

Ake2 e-gsn 8
Fn Akee'5.

k2(U2 62+V2 (cosO-6)2) -k
2 . 2 +(cosO-6) 2

(17re 2 ge 4 AA
* X 2Ak2 2si 2

01 Z m

l's.in-iJA, A2

(3.56)

-, The first term in both expressions is their respective coherent

component.

b. Non-Gaussian Surface Autocorrelation in the Farfield

1. Preliminaries

5% The Fresnel phase approximation result shall not be considered

-. 1 .'%*

herein, hence there is a need to specify that source and receivers

% % %

A, -'L *C
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be in the farfield and the beamwidth be sufficiently narrow. The -6

criteria for farfield for the Tangent Plane methods was developed and

discussed by Welton (25) and can be summarized, for the worst case

(specular direction) intensity computations he finds that

a 1345 rR') 2 )

> (1+ (357
L - 2 1/2 ri sinei (3.57)

In the nonspecular direction the criteria is less stringent.

For covariance, both receivers must satisfy the above criterion, thus

r and 9i must assume the values of the respective receiver.

Furthermore, we limit ourselves to presenting results valid for the

surfaces with onmidirectional spectra, hence Ll-L 2-2- 1 "
2 L. %

The same high and low frequency approximation performed in

connection with the Standard Model shall also be used here. The term

involving the operator and the surface autocorrelation needs to be

computed for both the high and low frequency approximations:

TeGC G (sinOzsinO2 + k2 G (ClC 2 [S(X 2 )+GS2(Xx)]+&6 2[S(X
2)+GS2(Xy)] 'N

Te~17 x sn~iO y %X/

+(e1 62+26 1 )[6(xxXy)+GS(Xx)6(Xy)] 0

+k( 1Ez sine 1 +f 1 sin 2 )S(Xx)+k(62 71 sinO 1+61 f lysin2 )S(Xy)) eGG .%.- !-..

(3.58)
0

where S( ) - 2r-- f dXW(X)( )eixr± s-' %

and the quantity in parenthesis is always a scalar (magnitude). I
.'., .,.

. . - . . % . .. - s.- : ;w .; :%. .% : : ;¢) P. c .'v-,,:,' ,:v, .... , ...,,,.e,
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2. Slightly Rough Surface: The exponential in (3.58) is

expanded. The first 2 terms are retained and (3.58) is substituted

into (3.42), the equation corresponding to the Fraunhofer

approximation result. The integrations in r, are peformed to obtain

ik~rl-r2)r 8
Ah e e

12 LF 47n2ro 2rir2 -117 2

k2

X k2
Sk-y 1-y2 sin81sin62 e

(kC+XX) 2  (k#+Xy)2

CO- U2 - V2
G___ 2 2 2+ dWXe(k 2- 17 2sinOjsin82+C1f2X

+66X2+(E 1
6
2+e261)XXXy+k(e2 -ylsin~l+eis.ino2)xx+k(62sin~l+SlsinO?)Xy)

(kct+Xx+Xx) 2  (kp+Xy+X )2

2r~) dX f dX' W(X)W(x')e 2 U2  2V

(27rc72)2 df Sd X WXWXWX

-0 -CO -

2 2,X(, +X +12X+Y ) (e2E2lXX+6X+ A1E 2xXx x y y

+k( f2Y 1 sin + e6 172s n ) (3.59 ( *551s 81- in02X

CO 00 A
UG3
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The range of validity of (3.59) is that GC(rl)<<l. The intensity is -.

Fh A2 k 2  
-

r 11 LF 4x2(rr)272 (k272sin2ele 2

(kLa+XX)2  (k,6+xy)2  t
- U2 - - V2

+ f dXW(x)e 2 2 V2

x (k2.2sin2Bi+e2X2+62X 2+2c6XxXy+2kysin 1
x (eXx+6XY))

kx y 1 x-

(k;+Xx+x )2  (ko+Xy+X) 2
- 2 2  2 V2  .

+ (2f2)2 f dx f dX' W(x)W(x')e 2 2 V V2

(E2(Xx+XxX )+62 (Xy+XyXy)+2e6Xx(Xy+X)
x x Y y y y

+2ksine1 (Cxx+6Xy)) ,,

+23 f G dx f dx' f dX" W(x)W(x')W(X")+ (27ra2)3 " ® - Z

-0 _cO -OD

(ka+X+x +X ) +Xy+Xy) 2
. U2

- Y V 2 - .-

e 2(2XXX +62XyXy+2c6XxX (3.60)

3. Very Rough Surface: The method of stationary phase is
S

employed to evaluate (3.42) with respect to its spatial dependence

once (3.58) is substituted in (3.42) and the results from (3.28) and

(3.29) are used. In this case, the result

'P.,- .. .,

" " ,- " ' "-" 1' " ".,,/ .'.',',4"' " " ." ".' 
"

'. " * "/' ,4'"4"-, %P" " %" W' q. % ,,-"./ ", '- '," -,%,.%"" % .".." % %"""."'."% ."',," %" %,",
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GTa k2  -

A2e ik(rl- r2)e 2 e 8 1-j2+2~

r12 EF 47w2 r' 2rlr 2 'yl-2 BlB2

k2  CZ21U2 +82V2
r2 (B2 B2)

x jk2 72singsinee1 2

(ka-4XX)2U2  (k#+XY)2V2

G 2B2  - 2B2

+ ia G dXW(X)e 1 2

2 2
x 1e E2 X+61 6 2 X +(e1 62+E2 61 )xxy+k(C2-visin~l+eilf 2 sinoz )XX

+k (6 2 71 sin 1 +6 1 7y2 s ine 2 ) Xy %-

(ka+XX+X )2U2  )V

2B2  2B2
G2 1___ 2 0

(2rr22f dX3J(X)W(X')e 4

(ClC2XXXX + 6 162X yX y+(el6 2+C2
6 1lxy (3.61)

where B1 - 1l-GT1 U2  and B2 - 11-GT2V are positive roots.

This formulation is valid when GC>>l and the intensity

.1

k2 cr2U2  ftB22
r Fh L BB 2e' 2 2 (k 2 - 2 si 2 ee 2(+ B

(ka+XX) 2U2  (+x) 2V2

2B2  - 2B2

+1 2
+ 2--a-- dXW (X)e

20

VIA ,

NJ ' 'W N N -P
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( 2)Cx+6 2 )xy+26XxXy+2ksini(eXx+6Xy))

(ka+Xx+'x) 2U2  (k+Xy+X) 2V2

2B2  2B2

+ (2dX 2 ) 2  fdx dx'W(x)W(x')e 1_21

(C2XXXx+62XyXy +2e6XXX ))• (3.62)

Low and high frequency expressions in the Fresnel approximation could

be developed. The algebra is involved and tedius, but not

impossible. -

C. THE COMPOSITE-ROUGHNESS MODEL (5,6,7) %

1. Introduction

The present section deals with a technique that has been

successful in studies involving a one-dimensional ocean surface. %

This is so because it assumes that the surface to which this model

applies scatters the incoming wave in two phenomenologically

different ways. First, the long wavelength incoming radiation, sees

a surface that is locally flat, possibly with non-zero slope, and

scatters from it as if though it were a distribution of mirror-like

facets. In optics this corresponds to the physical optics domain of

radiation scatter and is not new to us since it is formulated by the

Helmholtz-Kirchhoff Integral or the Double-Layer Potential Integral

discussed previously. Second, the short wavelength incident wave

will be scattered diffusely by the ripple which rides on the large

r,.. ,.
*. *...F^.
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scale undulating surface (see Fig. 3). The ripple has the features

of surfaces to which the Method of Small Perturbation applies, such

as rapidly changing slopes and small crest-to-trough amplitudes. A

theory that applies to surfaces of this type, with two roughness

ranges, could be one that merges the Helmholtz-Kirchhoff Integral and

the Method of Small Perturbation. It would imply. that the scattered

wave undergoes Dali-like distortion as predicted by the Helmholtz

Integral, but the sharp definition is somewhat lost due to the

contribution of the perturbation.

The model being discussed is the Composite-Roughness Model. It

applies well to surfaces that can be divided into two scales of

roughness, and have most of their energy scattering potential

concentrated in the lower regime of the spectrum. However, a problem

arises when it is not clear where this spectrum splitting occurs.

McDaniel (7) has improved the method by including diffraction

corrections. These corrections are also beneficial in reducing the
As

sensitivity of the results to changes in cutoff surface wavenumber.

As with the Tangent-Plane methods this strategy requires the 5

computation of the expectation of the projection of the source

wavenumber and the random surface normal. A choice must be made, ,'

which usually considers computational simplicity heavily on the 5%

averaging technique. But the demands here are not so stringent as in

the Tangent-Plane Method since the normal in question is taken to be

the slowly varying large-scale roughness normal. The next two

0%M,
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subsections will present the spatial covarance formulation using the -

conventional Composite-Roughness Model and diffractive corrections

are introduced in the last section.

2. The Conventional Model: the interest is to develop two

expressions in the Fraunhofer phase approximation. One will

incorporate the function f(O) as an approximation to the evaluation

of the dot product involving the random normal to the surface.

Another expression will use the slope operator instead. The last

section shall leave the issue of the dot product behind and shall

describe the changes that occur in the model when diffractive

corrections as proposed by McDaniel (7) are incorporated.

a. Integration-by-Parts Procedure: Equation (3.10) is our

starting point. The autocorrelation function is expressed as a sum e-

of contributions from the spectra of the large scale surface plus the

small scale surface spectra.

C(rj) - CL(r±) + CS(r±) (3.63)

where

0

.NN

CL(r) - 1 L 2dir~W( lcsx~± )
2,ro2 £'cc cf f. ,i )osx~±

S..

N o "Z. 11

S

S
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in cylindrical coordinates, with KL 1 eing the low wavenumber cutrff. -6

Thus, the exponential eGC can be expressed as

eG(CL+Cs) - eGCL [I+GC S + 2.s +. (3.64)

so that (3.10) is now

Ak2 f1 (B)f2 (e)eik(rl r2 
)e r e  8

12 81r 2 rr 2 r' 
20k0

ik (rl •s) eGC5
XfdrjDe e [ I+GCs ]..

f% %

if we retain up to first order terms in Cs.

The first term of this integral is the contribution from the .

large-scale surface and shall be separated for convenience. The

expression for the covariance is

k2(U+22 v%

ik(r l-r2) -r 8
Ak 2 f1 (8)f2 (8)e e e %N

r1 8,r2rir 2 r'
2

12o

x{Q + f driDe ik (rl± " Se GCLGCs } (3.65) -+-00 i. -

- . . 4

00 (r-s)C(Q +f drDe ik (3.65)s

where QL f driDe r eGCL

", f -"

0,. - j

a.-..a % N
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.,

The large-scale surface autocrrrelation can be expanded about r,-O.

The autocorrelation length is assuned to be small and the spectrum is

assumed non-directional. Thus, Ow

CLr) - o 2 a 2 - y (3.66)

with a L - rms large-scale surface waveheight

- the x component of the rms slope-large scale surface .,x %

o - the y component of the rms slope-large scale surface. I

Substitution into the explicit form of (3.65) gives S

Ak2 f,()f 2 (e)eik(rl-r2)e- r -e 8 (
2U 2+ 2V2 )

12 81r 2 '2r r 2 .2,r

G( C (a ax2+a y)

a ik(ax+,6y) 2a2 X %G(-) -® - ,.w*I'

fQL+ e f dy f dx DeYe

2a2 J dX W(X)eixrd (3.67)

The symbol * indicates that the integrals lower limit corresponds to

the cutoff spectral wavenumber.

Integrating over x and y gives .-.

*%

4-
4-..:

4.. N

%0

- 4.i.5:.@

I ,°,
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0

- k2 (a-2+0V2

A2fik(r 1 -r.) e-P r e 8)
1 Af(8) f2 (8)e e QL + P

12 81r 2rr2r1r,

2 U
2  - V2

G()G - F-(kck+X 2 -2 (kI+Xy) 2

2Ae G f dXW(X) e 1 2

RjR 2  2ja2 -o°...

°~~aL 2 ''':
k2 2 t2 U2 L32V2

2Ae - [R2 R2
with QL- R R2 e 1 2 (3.68)_S

. ~
Sand RI - 1+GU2(--X)2',

/ %z%

R2- l+GV2( )2 are positive roots.

C

and the intensity is similar except that the constant in front of

(3.68) is replaced by Ak2f2(8)eg 2 The above equation and the: • 8r2(r'r2
GCCG%

resultant equation for intensity are valid so long as (-)2 %1 I<.

In terms of a coherent and incoherent component, (3.68) can be

expressed as

k2 ak2 U2  Q 2V2

+__I- (k += - k+y = )
R R

r - r 1+e1 1
1.12 12 coh

Ap (a$X) U2  -V
2  

- d

P 0 2R2  2R
2 r 2

21ra2 dxW(x)e (3.69) '

4 ", A

P4, VA. .,'P%. N ' % . 4 *4 .--- ~~.
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-r
so that r - e as usual and12 coh 12 M * ---

k2(a 2U 2+R62V2 ) G( )2  .4w

Akf(@)f2(9)eik 2r)ee e

r M 4 2 r' 2 r r r r2R .R2

k2  a2U2  B2V 2

21 +
R 1 R 2 ," -

X e 1(3.70) d.

The intensity has the same term in ( ) brackets (the values of a and

are different for intensity) but

OL )2 k2  ; 2U2  82V2 ]
- + ] . .'.

2 R

r A2 k2 f2 (e)e e e-9 (3.71)
11 cob 41 2 (r' r) 2 RR 2

b. Incorporating the Slope Operator; ,%..

Recognizing the similarities between the expansion in (3.64) and

the one used to obtain (3.59), the result of using the slope-operator

in the context of the Composite-Roughness Model can readily be

derived using the results of (3.68):

A2e ik(rl-r2)e -re 8~ 2 2+ 2 2 ea

121

k2e
i k r
12 s )en s ee
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(k;+XX) 2 V 2  (k#-+X7 )
2V2  -

GoR2 2
2 2Z2

+ - f dX$J(X) e 1k-y 2 2
(27ra2) 7k2  ys in 1s in#2 +C1 C2~

616 2X 2+(C 1 62 +e2 61 )XXXY+k(ezYl sin$, +e172sin82 )XX

+ik(62-f1 sin1-i 6l' 2sine2)X,)

(kct+X +X )2U2  (k#+X +X )2V2
x x V

C cc2R 2  2R2

,)2 fdX fdX W(X)W(X')e12

S2 X X,)+61 62 2

+k(e 2- sine +e 1-y 2sine )xx+k(6 2 1 sinP +6 1-v sin$e )x )

+(F-3fd dx d W(X)W(X')W(X")

(k+X+X +X )2U2  (kl+ ~ +XX 2V2

22

2R2  2R2  K

e

(e 1C xxx+6 16 2xy +C162 +C 6 )xxA (3.72)

Gas Cvalid so long ( a)«l. The symbol t indicates that the lower limit

of integration is consistent with the lower limit in (3.68).

The intensity is
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-g g( ~2 22+d2

r - A2 e e Wk2 2 sin2 9le 2R2
+R

11 41r 2 (r'r)2-y2RlR2

(kCt+X ) 2 U2  (k,6+X ) 2V2

(2R
2  

- 2R2

21) fdXW (X) e12

(O-~sn~ +2 +6 x2+e6XX+2kysinOj(cX+6Xy))
x y

(k;+XX+XX) 2U2  (k#+XY+XY) 2V2

G Go2R 2  2R2
+ -- )fdx fdx'W ()W('

(e2 (X2+XXX)+62 ( (x+X, )+2e6xx(xy+X )

+( R )3 fdx fdxr fdX"v W(X)W(X#)W(Xn)

(ka+X +xx+x) 2U2  (k#+X + X+X) 2V 2 0

2R2  2R2

e 12

op ""*o

(C2xxx x+6 2xYx+2e6xX ))3.3
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3. Comoosite-Rouahness Model Incorooratiny Diffractive Corrections

The surface correlation function is partitioned as was done in

(3.63), but the expression for the large-scale surface correlation is

now

a2 2 [ X+a22+- L "i 27rdWxO(o(-j

GCL - -L 2 [u 2 2 a 2  W io=C L -o [ox,+,,y, + _i g d f dfW(K.){cos(X'r±)
0 0

-1+ 2 (x'r±)2) (3.74)

Using (3.63) and (3.77), the exponential term in (3.10) is

' '2XL 21r

ik(r,.S)- G xx y f- -  d /dOW(K,n)(cos(x-r±)-I
2o 2wo 2 o o

+ I(Xrl02) -G(!'-)2+Ga2CS (rj). (3.75)a'i

When G(aa) is small the above result can be recast as

ik(r's)- G G(ikrj-)-2a 2 [(°xX)2+(Uyy)2]l[l'G2(l'C(ri))+ 2- 2 ((axX)2+ay2]

(3.76)

Using (3.75), or (3.76) when applicable, in (3.10) and performing the

integrations over r, variables yields an expression that incorporates

diffractive corrections and that is less sensitive to the choice of

partitioning wavenumber. The result is also attractive because it

lacks computational complexity and gives fairly good agreement when I
its predictions are compared to experiment.
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CHAPTER IV

SCATTERING STRENGTH AND COHERENCE

A. SCATTERING STRENGTH

The different models presented in the previous chapter are

compared and their behavior analyzed. The aim of the first half of

this chapter is to compare the Standard and Slope-Operator Model in

general terms, in addition to the three alternatives to the Slope-

Operator Model: the Fraunhofer Approximation, the Fresnel

Approximation and the case when the random normal - is approximated
8n

by 8z " To enable comparison, section A examines the scattering

strength, defined as

S - lOlog1o A r ) (4.1)

involving a flat and a Gaussian surface. Note, however, that the

plots shown are normalized to the maximum values. Therefore, the

figures show the normalized scattering strength. The second half of

the chapter compares the Standard and Slope-Operator models, as they

are applied to the measure of coherence (1, p. 498)

y 12  1 (4.2)

11 22 I
- Pe0
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S
when the surface involved is Gaussian. From the three alternatives

of the Slope-Operator Model, the Fraunhofer Slope-Operator Model is

chosen for comparison to the Standard Model.

1. Flat Surface:

The classical expression for the scattering strength involving a

flat surface in the Fraunhofer approximation is

Ak2 sin2 0
SO - lOlog 10( 412 1 (4.3)

and is shown in Figure 4 in the specular case. Equation (3.51), the

Slope-Operator Model yields

Ak2sin
2 p

Sso " lOlog10 { 4 } (4.4)

when r' and r become large and the beam very narrow. If the same

approximations were possible for the Standard Model (3.20) the result

would be

S l0log {A k 2 f 2 ( e )  (4.5)
o10 4r

For the specular test shown in Figure 4, f(O) reduces to
0

(l+sin2p)/2sind. Figure 5 shows good agreement between the

Fraunhofer Slope-Operator, Standard and Figure 4. The plots of

Figure 5 show the models without making any approximations. The

Fresnel expression will agree with the other two if the above

mentioned limiting vaues for r', r and the beam are made. The

%

%01%
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discrepancy between the Standard Model and the Slope-Operator Model

in connection to the angular dependence demonstrates how weakly they

depend on the functions f(G) and sin 2a in the specular case.

For the forward case, the lack of consistency between the two

models becomes more obvious. This hypothesis is based not only on

the fact that f(8) does not simplify to sin2 $1 for all cases, but

because by assumption the Standard Model is valid not far from the

specular direction. Figure 6 illustrates this point. The Standard

Model misbehaves at low and very high receiver grazing angles.

Since the Standard Model is limited to the near specular

direction, in the backscatter test it is expected to perform poorly

far away from the normal to the mean surface. This is obviously

demonstrated in Figure 7. These figures show the backscatter

involving a flat surface and a slightly rough Gaussian surface for a

source with 3 beamwidth operating at 10 KHz. In this test it is

expected that the energy be higher in amplitude and largely

concentrated around the normal (source grazing angle of 900) for the %

flat surface scatter as shown in Figures 7a an 7b for the Fresnel and

Fraunhofer Slope-Operator Models respectively. This is not the case

for the Standard Model tha is plotted in 7c. This last figure shows I
good agreement in the normal direction but breaks down for low

grazing angles, because the model is used outside its region of

validity (see II.B.I).

% 0
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2. Gaussian Surface:

a. Backscatter

Figures 8a, 8b, and 8c correspond to equations (3.51), (3.50),

and (3.20), respectively, in the backscatter case. The three figures

show good agreement in the prediction of backscatter close to the e

normal direction. As expected, the low grazing angle regime shows

the Fresnel expression yielding demonstrably less backscatter. Near

the normal the three models show that the amplitude changes in

proportion to the frequency squared, which is implicit in the k2 that

is part of the coherent component of equations (3.51), (3.50), and

(3.20).

The effect of changing the rms height of the surface is

illustrated in Figures 9a, 9b, and 9c. With an increase in the rms

height, the area under the curve becomes wider, as is the case in 9a

and 9c, and the overall amplitude drops as seen in all three plots.

Again, the Standard Model fails to provide good results far from the

normal direction.

Further insight into the way the Standard Model behaves for low

source grazing angles is given by Figures lOa, b, c. In these three 0

figures the broken lines represent the coherent component of the

backscattered intensity and they can be compared to the solid line I
which represents the coherent and incoherent components combined. In 0

the Slope-Operator Models the incoherent component contributes to the

radiation even at low grazing angles. This is not the case in the

Si

p p.,'V.
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• :,S

Standard Model, for which the radiation is excJ.isively predicted by

the coherent term. The plots correspond to a source operating with a

30 beamwidth at a frequency of 10 KHz. In all the models the

incoherent component is the sum of ten terms which is more than

adequate for the values to converge for this frequency. In general,

the higher the frequency, the more incoherent terms are needed since

an expansion of the exponential involving the roughness parameter G

was performed in all the models. The result in turn depends on the

square of the frequency.

b. Forward Scatter

In the forward scatter test, a source is placed at 500 cm from

the surface, at an angle of 450. The receiver is 200 cm away from

the surface. Again, the surface has autocorrelation lengths of 20 cm

and an rms height of 2 cm. The scattering strength is expected to :

peak in the neighborhood of a receiver grazing angle of 450,

corresponding to the specular position.

Figure 11 is the forward scatter, for a source with 30' beam

operating at 10 KHz, as predicted by the three models. The peak

occurs in the neighborhood of 480, not at the specular angle. The S

peak is frequency and beamwidth dependent in all three models and

will shift to the specular angle as the frequency or the beamwidth is

increased. This shift is apparent in Figures 12a, 12b, and 12c, in %

which all models exhibit a peak which is further away from the

specular angle at lower frequencies.

-%e

71
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Figures 13a, 13b, and 13c, show the maxima moving away from the

specular angle for smaller beamwidths. The plots shown in Figures

14a, b, c hint that the problem lies in the coherent component of

equations (3.20), (3.56), and (3.51). Since it involves frequency

and beam characteristics and is a function of geometry, the

exponential in the coherent term must be causing the phenomenon.

The coherent components of all three models are compared in

Figure 15 to show once more that the Standard Model misbehaves for

angles far away from the specular direction (800). This is

particularly obvious for shallow receiver angles. A comparison of

this figure with number 11 gives an idea of the importance of the

incoherent component away from the specular direction.

c. Azimuthal Forward Scatter

In this test the source and surface are as in the previous

section, and the receiver is at 200 cm from the surface, the

azimuthal angle is allowed to change while the depression angle is

held fixed at 45° . The reader is reminded that the forward direction

corresponds to an azimuthal angle of 90*, whereas the side and back

are at 1800 and 2700 respectively, as depicted in Figure 2. Figure

16 shows a comparison of the three models. The peak occurs at 90'

which corresponds to the specular direction, facing the source. The

dip at 2700, in turn, is the antispecular or source position. The

three models tend to behave similarly, although the amplitudes do not

agree except for when the receiver is in the specular direction where

SeH
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ge

the Standard and Fresnel result show agreement. Figures 17a, b, c

show general qualitative agreement. Changes in the symmetry of the

surface affect the predicted scatter in the antispecular direction

(2700). When the autocorrelation length parallel to the surface

direction is increased, the backscatter drops drastically towards the

source and the forward scatter increases somewhat. In the limit of

large autocorrelation, this result is logical since in the mirror

surface, the scatter is mainly in the forward direction. On the

other hand, when the cross-directed autocorrelation length is

increased the figures display a narrowing of the forward-directed

scatter and an increase in scatter towards the source. If a surface

with one-dimensional corrugation is envisioned and a source is Ad

directed along the corrugation we would have the limit of the first

example. When the source is directed perpendicular to the

corrugation we would have the limit of the second example.

d. Summar

The Standard and Slope-Operator models are qualitatively alike,

except for low grazing angles. The energy distribution is better

described by the Slope-Operator Model than the Standard Model as the

surface parameters change, mainly because the energy in the Standard

Model is exclusively dominated by the coherent contribution. The

coherent component is a good roughness estimator. A different

approach to the integration-by-parts or the Slope-Operator is

W.

% % %

ejZN 0
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possible when the surface is only slightly rough. Th's

is done by approximating n by , and upon exmining the.
an 8z aduo xmnn h

development in analogy to the Slope-Operator Model, assuming f, and

to be zero in eq. 3.34. The result is identical to the coherent

component of 3.45. Thus, a comparison between any of the previously

mentioned models with this new approach is one in which the coherent

component of the Slope-Operator Model is compared with the full model

as well as the Standard approach. The main deficiency of the latter

model is that no spectral information is supplied, or required, by

the resulting expression. Hence, the approximation is valid in

regions where the field is coherent. That comprises a region in the

neighborhood of the specular direction for forward scatter and in the

normal direction for backscatter. The size of these regions grows as

the autocorrelation lengths get large and the rms height gets small.

The significant difference between the two Slope-Operator Models

in the far-field occurs at low grazing angle where the Fresnel

expression predicts lower energy levels. To answer the question of le

which model will agree better with experiment, a comparison with data

is required. In the following section, among the Slope-Operator 0

formulations, the Fraunhofer expression is chosen to study coherence.

B. COHERENCE

A source operating at 10 KHz with a 3' beam is placed at 200 cm 0

and 450 with respect to the mean insonified surface. The surface
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has autocorrelation lengths of 20 cm and an rms height of 2 cm. When -*

one receiver is placed at the source position and another is allowed

to move polarly as in Figure 18a, the coherence magnitude varies as

shown in Figure 19a when predicted by the Standard and Slope-Operator

Models. The peak occurs at 1350 which corresponds to the

source/fixed-receiver location. If the moving receiver travels

azimuthally at a constant depression angle of 450 as per Figure 18b,

the magnitude coherence is predicted as plotted in 19b. The

coherence is unity at the source location, when the azimuthal angle

is 2700.

When the fixed probe is placed 200 cm away from the surface with V.

a depression angle of 45 and a moving receiver travels vertically ,S

forming a plane perpendicular to the mean surface, the arrangement is

called here a vertical coherence test. Figure 20a illustrates this

arrangement. The angle 0 is set at 90 ° for the forward scatter

direction, 1800 for the side scatter direction or 2700 for -

backscatter direction. The results for these three cases appear in . ',

Figure 21a, b, c respectively. The peaks occur at a horizontal a....

distance of 141.42 cm, which corresponds to the depth of the fixed S

probe (i.e., 141.42"sec 45°-200.0). Since r, is different from r2

except at the probe location, the phase of the coherence will be non-

zero as shown in Figure 22. This last figure simply reflects the '

change in phase due to the k(rl-r.) imaginary argument in the

exponential of eq. 3.45 for the Slope-Operator, and 3.19 for the

•,
e%
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Standard Case. The horizontal coherence test is illustrated by -.

Figure 20b. The fixed probe is placed at a 450 depression angle, 200

cm away from the surface. The forward, side, and back directions I
correspond to azimuthal angles 90*, 1800, and 2700 respectively (see

Figure 2). The moveable receiver travels in straight line parallel "-to

to the mean surface within the azimuthal angles shown in Figures 23a,

b, c. The coherence is strongly dependent on exp{-ri from expression

(3.45) and (3.19) which is a function of source and receiver

depression angles as well as surface roughness. These are factors

which strongly affect the vertical coherence, but minimally affect

the horizontal coherence, explaining why so little information is

provided by the horizontal measurement while the vertical coherence

is a good indicator of source direction as well as surface roughness.

The width of the magnitude of the coherence tends to get %

narrower with an increase in frequency as shown in Figures 24 a,b.

The figures show that both models tend to better agreement as the

source frequency is increased. On the other hand, better agreement

between both models occurs when the beamwidth is decreased. Figures

25 a,b are plots of the coherence as a function of beamwidths for the 0

two models. The coherence curves become narrow with an increase of

frequency or beamwidth due to the exponentials involving -k2 as well ..- %

as -U2 and -V2 . S

~.*%,. ¢,2:
V

, %
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d

The c.:herence is a function of source position. For example,

when the source grazing angle is shallow, U2 is large so that the

coherence is low. This is particularly tue when a and a are non-

zero as is the case when the source and receivers are non-coplanar.

Coherence is sensitive to variation of the rms height but is best

used as an estimator of spectral information. The variation of the S
coherence with rms height is shown in Figures 26 ab. Figures 26 c,d

show that increasing the autocorrelation length parallel to the

source direction will tend to broaden the coherence curves. Changing

the cross-directed autocorrelation length does not have any affect on

the coherence plots, as is evident in Figures 27 a,b. The best
estimator of surface roughness is the coherent component of the

2intensity, since it is equal to <p>m<p>*Me , i.e., the

coherent intensity reflected from a mirror surface times a

"coherence" factor which is a function of surface roughness.

*-II-. ]
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% J%,.,i
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CHAPTER V A

IN-PLANE SCATTER USING THE PIERSON-STACY OCEAN SPECTRUM (42,43)

The aim is to illustrate and compare the far-field results

obtained from the models developed in Chapter 3 when the surface

involved is the fully developed, non-directional ocean spectrum -see

Appendix. For convience we list the most salient changes in the

variables owing to the geometry (see Figure 2) and the symmetry in

the spectra:

1+sinesind1

sin#+sinR.

l+sinesin92
f2(e) - in+sin6 (52

Since 0102-w12 then

61 - osa, cos 1+COS62

46 - COS8 2

a-1 - (Cosa-Cosa,)

02- (COSO-CoO2) (5.3) %
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and the spectrum W(X) is equal to S(r)/c for the non-directional

case.

A. GENERAL CASE

1. Standard Model

a. Slightly Rough Ocean

Implementing the above changes in equations (3.25) and (3.26),

the covariance and intensity for in-plane scatter are 0

r L -r
12LF - l2coh

ik(rl-r 2 ) -r- -V2 5

GA 2k 2f 1()f 2(e)e 8 00

+ 8r3a 2rlr 2 r'
2  dC d

2 xU2+(k#+Xy)V2]
x W(x x y)e (5.4) ,

xy

[V2(2+4)] ik(r1 -r2) -r

A2k2 f(8)e e e
with P -igcoh 4 12r 2r r 2

and

g .0

S- r + gA2k2 f2 (9)e" fJ- f *.11LF 11coh 8r 3a2 (r'r)2 dd0

2 [x U 2+(ko+Xy) 2V2 ]
! 2 xV .,%

W(XxXy)e (5.5)

.4

,, .,".:...:.:,,. '.: ',:,:....4';:<,:<. . <<,.-: <., ..a,.,,-- . .- , , -, ,.-.."-..-..v'.v ?'S'



114

A 2k 2 f2 (8)e 2 N
with c11coh 47r2 (r'r)2

To evaluate the integrals with an omnidirectional spectrum, we

perform the change of variables

Xy - iccosa..,.2'-

Xx - ,sinf2

and proceed using polar coordinates. The integral is now

k#V00 21r ik2U2 -[k2(V2-U2)cos2Q+2kOcV2coSQ]
e 2 f CCd-C f df2W(c,12)e 2 e 2

0 0

(5.6)

Where the omnidirectional spectrum S(x)/x and the angular integration

is performed using a procedure outlined by Beckmann (43, p. 195). 'P.

The expression transforms into

. Vk02V2 (r+ 1 2
2I2x M IM(-V2k#K)S(;) e 22,,e X" m!..

m-o [M! Vk J 0

(5.7)

When is zero, the expression takes the form

CO V pC

0 " r(m+l)U2"V2 m  2M

m-o 0 ..

%

AS .7-"
-I.'%' * *
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The evaluation of (5.4) and (5.5) with (5.7) needs to be performed

numerically.

b. Very Rough Ocean

For covariance eq. (3.30) is

ikr-r)-k2_ 2 G
-[V 2 (,82 +4# 2 )/B ) ] o

A2 k 2 f 1 (()f 2 (e)e e e

ZEF 41 2r , 
2 r x rl2 BlB 2

(5.8) 5

and the intensity is thus

A 2k2f2 ((e)e 2 B2
11EXF 41r2 (r' r) 2 B, B2 59

with B, - ,/1-GTIU2

B2 - ]l-GT2V
2

the square roots are to be taken positive. For an omnidirectional

spectrum T1-T2-T/J2 where

2 211I±_ l!_ 2 ix (sin~cos8+cosflsin9) ',_

-r2  2ra2  C I dS) r-o
0 0

or %

T -2 d 2S(') (10)

2a,2  VP~ccS(c
0

"?*:,S -"

0

w% I-

. . . . . . . ...-.--.... ........-.. , ,. - ...- . - ,,, o. , ,"ii
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c. Discussion

1. Scattering Strength

A source is placed 500 cm from the ensonified surface and is

operating with a 3 beawidth. The windspeed measured at 1000 cm is

514.4 cm/s (10 knots). This 10 knot wind produces a surface with P
,p

rms height of 15.8 cm and -7.1.I0- 5 for the parameter T, eq. (5.10)..

Under these conditions the scattering strength varies with

source/receiver polar angle for the specular test as shown in Figure

28a. Under the same conditions the backscatter case is illustrated

in Figure 28b and for the forward scatter case, 28c. Comparison of

the two plots gives an idea of the greater significance of the

coherent contribution as the frequency is increased. They also "-

display the phenomenon of a decrease in amplitude and broadening of

the curves as the frequency is decreased. Note as well that the

amplitude shifts to the specular direction - 450 - as the frequency

is increased in the forward scatter test. "

If, on the other hand, when the frequency and beamwidth are 10

KHz and 30, respectively, and the measured windspeed at 1000 cm is

257.2 cm/s, 514.4 cm/s, 771.6 cm/s (corresponding to 5, 10, and 15

knots) the scattering strength will vary as illustrated in Figures

29a, b, c. The primary effects are a broadening and decreasing 71
maximum amplitude with increasing rms height and slope. The forward

and backscatter curves show the fundamental shortcoming of the

.

dtot
- -~,, ... .. ,
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0

Standard Model, namely, the severe misprediction for low grazing

angles.

2. Coherence

Figure 30 shows the variation in the vertical coherence as a

function of windspeed. the source and a fixed probe are 200 cm away

at a depression angle of 45*. The receiver changes in depth from 50

cm to 300 cm. As would be expected, the coherence narrows with an

increase in the surface rms slope and height. The coherence tends to

narrow as well when the frequency or beamwidth is increased (see

Figures 31a, b). The nature of this phenomenon has been discussed in

the previous chapter.

B. SPECIAL CASE: WHEN THE SPECTRAL INTEGRALS CONTAIN A GENERALIZED %

FUNCTION

The integral

S -[X U2+X2v2 -

0dx j dXy Ne -1 (5.11)
.- O - 0 y

satifies the equality when U 2 and V 2 are very large and when N is I
equal to A/2W 2, because in the limit of very large U2 and V2 the

integrand is a delta function. This fact can be used to explicitly

evaluate some cases that involve an arbitrary spectrum.

In this section the above fact is used to solve the equations,

developed in the previous chapter, which involve a non-gaussian

5' spectrum. The Pierson-Stacy spectrum is chosen here because it is an 'A'
interesting case involving a non-gaussian spectrum belonging to an V

'r 'sN .7- ,
% N

. %*

• _' -S.,, + __ -• -- V
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J

assumed Gaussian height-distributed Dirichlet surface. The in-plane

case is considered, as opposed to the general geometry, because the

amount of algebraic manipulation is reduced considerably. However,

the approximations to be made in this section do not rely on the fact

that the source-surface and surface-receiver rays be co-planar.

The integrand in eq. (5.11) is not present in all three models

considered in the last chapter in the form presented above. Thus,

the constant N shall be different for all three models, depending on

the other parameters of the quadratic term in the exponential that

behaves delta-like in the above approximation. The parameters U2 and

V2 are contained in all three models and one must be careful to

consider cases of them large not by making the aperture wide but

rather, by making the values of the source-surface distance very

large in comparison to U and V (see eq. 2.7) while maintaining a very

narrow beamwidth. This is because an assumption common to all three

models is that the ensonified area dimensions must be comparatively

small -see Chapter 2.

1. The Standard and Slope-Operator Models

a. Slightly Rough Surface

Using (3.25) and (3.26) as well as the integration properties of

generalized functions, the Standard Model yields

°-- -F~J

GAk~f1(8)f 2 (8)eik(rlr2)e e W(0,1k13) - -p

r L -r + _.

*12LF 12coh 4nr2 a 2 r 2 rr 2  (.2
(5.12) 0

• / ... .. . •

F * ~% . ~ pP .' - .5.V . .~ 5' ' ~-5- .. .. %
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"8k" (62+442)V2-F-

A2k2fi (8)fz (8)eik(rlr2)e 8 e -r

with 2 4r2r, rlr 2

and

gAf2(8)e- g W(0,!kpI)
r - r + (5 13)

11LF 11coh 4ra02(r'r)2  ( .

%~ 10,

- _-V2 42 e
A2k2f2 (8)e 2 e -

with rlc h

with F 41r 2(r'r) 2

for the covariance and intensity respectively. W is the cartesian-

surface spectrum.

The Slope-Operator Model in the Fraunhofer approximation, Eq.

(3.59), gives

Ak2eik(rl-rz) e 8  - r k2

12LF 2r 2r r2 7 72  27r2 71  sin61sin62e 2" 2V2

+ G~c 712siO1si02+o61CS24

(cos62 sinO1 Y1+cos91 sin0z72 )9]

---. -C 'j2 "-;--k ) k [ a,.., j* '

+ l kdXW(X)W( 7Xy Ykf)X yk[(CoS 2sin~ yi+cos81sin02 "2 )

- cos
1
cos ]  (514) 1

I I
a .

V V -% %. -,. j ]
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and (3.60) yields

Ak 2 e g A2 2V2

r 2r e) A 2ff 2 sin 2 le 22  + W(0 kl

11LF 2- r2rra'y2WI027r2)21ra

[-. 2sin 2o+cOs28, 2-2cossinS-y] -

+ 2 2k dXWe(X)W(-X x ,-xy-k)xyk[2cosesine,-iY cos26iI}

(5.15)

for covariance and intensity. In both equations the highest order

correction is neglected.

b. Very Rough Surface

For the Standard Model the covariance and intensity are

respectively

rl ()62+ )V2  To
A2k2f28(B)fzI(2)eik(r 8 + e 2

12HF 41r2r' 2rr 2B1 B2  !

(5.16)

and

k22V
2

- 2B2 22
r 2 ()B (5.17)

using (3.30) and (3.31).

%- U
I

#. , ..," e.e. . ".r • • i #' e .' #" . ~ e' .e ' " r ' /, #" 0
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The Slope-operator Model expressions, using (3.61) and (3.62),

are

r -Ak2e ik(rl r2 ) e f2V 2 eA____
12HF 2r 12 r, ,r2 71 72  2 {2r2B1B2 7172snsie

k2 B2V2
2 2 C-

e 2 G W(O, Ik~I)[cos~iCoSed 2-

(CoS0 2 sine1 -yj+cosejsinO2 -,9) ]

(7- )TdXW(X)W(-x.-xy-k )xy(xy+kA)} (5.18)

and 
''

k2 _ V2  ,-.

Ak A 2 20 2 BIr1Hr -2(r 2-f r2B1 B2 7 s in le + 27ro' 2 W(O,IkoI)

[COS291)2-2coseisineiAI(y&y dxW x) xx,.xy.ki )xy(xy+k )}

(5.19) .lI

With GT, and GT2 very small. The added constants come from the

normalization factor required for this particular case. '-,

2. Comiposite-Rouahness Model

'VI
, I.

The wo ltenaties: usig eq (368) whih i th

convetionl aproac, leds t
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1c282V2  i

G(" )2-rA

Ak 2 f 1 ()f 2 (e)e ik(r -r ) e  8 e a-

12- 2r' 2 rlr 2

e- 2L(RY2 + W(0,Ik~I)U(rKL-Ik~jIl (5.20)2ir2R1jR2  27na2

for covariance and for intensity

{6
It kBV2g[( ) -11 ( )2

r Ak 2 f2 @()e A e

11 2(r'r) 2  27r2R 1R2

+ 22-X-W (0, 1k IU(OL- k l)  (5.21)

aL is the rms height and a' and a' are the rms slopes of the large-

scale surface, u is the Heaviside function. The quantity RjR 2 can

be replaced by Gax 2Oa quantity that must remain small for these

expressions to be valid. •

When the Slope-Operator is incorporated, the integrations in

(3.72) and (3.73) yield e -

k2B2V2  L r

F Ak2eik(rl rz)e 8 e a A , isinsin82

12 2r' 2 r ,r 2 Y7 2  21r 2 R1R2 7172

1(kBV12

e 2 ~LR2 J + (___G__ W(O,jk j)[-y7y 2sin0jsinO2 +61 6&2 2 -

(62 sin01 -y+61 sin02 72)]U(, 'Ik ) S

7
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+(2k dXW (X) WXx, -Xy -kB) Xyk[(6 2 s inOyj+6, s ino 2 72)

6S162161u(ICL k (5.22)

and

rF A- Ak in 2 o, e 2 (R2  + W(jk)
11F 2(r'r)2 _f2  27r 2RjR 2 S + ,WOk8)

[12sin2 +COS2 2-2cosO1:in~jY4]Uk/XCk~j)

L........2  dXW(X)W( X -k_ x k(2coselsinelfi-cos 01l8uoLkjd
~12,ra * y y

(5.23)

3. Discussion

The spectral part of the above equations can be recast in

cylindrical polar coordinates, which is more convenient than cartesian

when the surface is omni-directional. In that case the following '

changes occur:

XX - PCsifll

a - 'cKcosQ2a,

jk4

dXW(X) -ccd S(ic) 4

S..
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and W(-Xx,-Xy-k ) - I

where - I 2+2nkficos1+k2f 2 
, the positive root.

The spectral integrals will span over x from 0 to infinity and 02 'U-
from 0 to 21r, except in the Composite-Roughness Model, in which the

span of x is from rL to infinity.

Figures 32 a and b are plots of the backscattered and forward

* scattered scattering strength as per equation (5.17). In these

computer runs the source and receiver were set at 1000 cm from the

ensonified surface. The wind 1000 cm above the surface was 514.4 cm/s •

and the source was given a l' beamwidth. In the forward scatter test %U

the source had a 450 depression angle. It is apparent in Figure b that %

far away from the specular direction, i.e., for receiver angles greater

than 1200 or so, the model begins to fail and the effect is more severe .-.

for lower frequencies. The reason for this is that for small U and V,

the source wavenumber k must be large in order for the conditions kV>>l

and kU>>l to prevail. .

A comparison of the prediction of equation (5.17) with that of .

(5.19) in the backscatter test case is shown in Figures 33a and b.

These are, respectively, the Standard Model and the Slope-Operator

Model for source/receiver distance of 1000 cm, 1 degree beam and 20 U-N

KHz. The wind is 514.4 cm/s at 1000 cm above the surface. The Slope- .

Operator Model and the Composite-Roughness Model using equation (5.21) '-.4.

are compared next in Figures 34a and b. In this case the source is 70

%,4.

%4%-~~ %,~U
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cm away and all other parameters discussed above are held fixed. %

Figure 34b shows the characteristic Bragg resonance dip in the

backscatter plots, which are typical of the experimental findings. The

dip is more noticeable when the beamwidth is narrow - see Figures 35a

and b.

Figures 35a, b, and 34b have all been plotted using a quarter

source wavenumber value for spectral cutoff value KL. The choice of

cutoff is not at all given by the theory itself. Figures 36a, b, and c

show the variation in the backscatter with choice of cutoff wavenumber.

In these figures the frequency is 10 KHz and the choice of XL is (a)

equal to the source wavenumber, (b) .8 times the wavenumber, (c) 0.25

times the wavenumber.

Another feature of the Composite-Roughness Model as per equations

(5.21) and (5.23) is that care must be exercised in order to not

operate out of the bounds of the regime of validity. Assuming the

beamwidth is small, the four conditions that must be satisfied are:

a2
'(a) GCs << 1, which leads toG - 2 << 1. This permits the

a
(9" 

"U 2'-.

series expansion of the exponential involving GCs and the retention of 1'

the first two terms. 0

(b) a,"4 R4 < < 24a 2 - 12a' 2 R2 , where R is a radial distance on

the insonified area. In order for the Taylor series expansion of the

large-scale surface autocorrelation to remain valid, eq. (3.66), the

terms higher than second order must be insignificant compared to those

retained.

AI
'N'

N 'S

:'"V

'-Up' .4-.
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(c) U and V must be of comparable or smaller size than R. This

is necessary because an early assumption of the TPM was that the

integral over the entire surface was the same as the integral over the %

insonified portion due to the minute contribution of the integrand 4
outside of this region. As well, it is necessary for the quadratic

terms in the spatial integrations of (3.70) to be such that U-2 >>

Ga 2/a/2 and V - >> Ga'21 2 in order to permit the integration over all
K y

space.

(d) Related to the generalized function integration, it is

necessary that V-2 +4k 2sin26a,2 << 1/2 and U -2 +4k 2 sin2 oao',2 << 1/2
y x

because the delta-like integration becomes possible when 2R /V << 1
2

and 2R2 /U2 << N

The Pierson-Stacy report on ocean spectra (42) is to the author's ,.

knowledge the best study available in the open literature. The report .

is not considered to be a definitive study on the subject owing to the

fact that it is a compilation of reports made by several investigators

who considered limited surface wavenumber ranges in different

experimental conditions, using a wide range of measuring techniques.

In fact, most investigators agree that a thorough and reliable study on

the ocean spectrum would be welcomed, but the task has not been

performed due to the challenges involved with the measurement of

spectra in the open sea.

This chapter has been devoted mainly to the in-plane case, hence

the use of the omnidirectional spectrum W(X) - S(x)/x. The non-
",,,,* ,,,. ,

coplanar case would be most interesting and general, if the directional
4D

a~ ( ,-
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spectrum is utilized instead of the omnidirectional one used here.

This would require making none of the geometrical simplifications used

in the in-plane situation, as well as the incorporation of angular

variation in the spectrum function.

Angular variation in the spectrum would be expressed in the form . 4

W(,,) - S(,c)F(ic, )) (5.29)

with S(x) being the non-directional function used in this study and

F(x,) most researchers aegree has a general form •

F(xI) o G(s)Icos2 (Q-f)')I2s (5.30)

where s is a functicn of x such that F(c,O) tends to a narrower and

higher amplitude angular distribution (44) and G(s) is a normalization

function such that the integral over all wavenumber space of equation

(5.29) is one. The constant 0' is aligned with the mean wind velocity

direction.

The surface autocorrelation can be a function of time as well.

This implies that the surface has a well defined temporal dependence

and that the covariance will be space as well as time dependent. The

autocorrelation function can have an envelope which travels in time

with same group velocity. A case in point (38, p. 518) would be the

wind-blown water waves, for which the autocorrelation can be ftj
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C - exp 2  cos[f(- r) exp(-bx )  
(5.31)

where the waves are moving in the y direction with phase velocity v and

angular frequency 0. The envelope travels with group velocity u and is

coherent within an approximate range r in time. In the x direction it

dies off by virtue of the paramater b, the length of each crest. :-

In this type of highly organized surface states, the spatial and

temporal components of the autocorrelation are not separable. In a

confused sea, the waves travel in all directions and we would expect

the spatial correlation function to be isotropic, as was assumed in

this study, and that the spatial and temporal components be separable.

,% .%

.',. -

4. ..-.

, ,o ,~-.. ,.

,I '' ,
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b

CHAPTER VI

SUMMARY AND SUGGESTIONS FOR FURTHER STUDY

In this study two different philosophies for representing the

scattered field when a randomly-rough surface is involved have been

presented. The MSP is simple, adequate when the roughness is very

slight. It doesn't rely on the Kirchhoff approximation and will

tolerate steep slopes. The scatter is diffuse, whereas the TPM

consider it more of a distortion. The TPM does not handle steep slopes

but can work well with rough surfaces. The drawbacks of the latter are v

IN ,
the use of the Kirchhoff approximation as well as cumbersome 0

mathematics.

Within the TPM, several variants have been presented. The

Standard Model, simplest of all, is ill behaved for angles far from

the specular direction because the incoherent component makes bad

estimates of its contribution and because an assumption in the

integration-by-parts techniques is that the angular dependence is a #

function which is nearly constant so that that it can be removed from

the integral.

The other extreme in complexity is the Slope-Operator Model, which

is shown to behave properly for all grazing angles. This model is .,

compared when the surface is slightly rough to the case when the

S

I'
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gradient of the normal of the surface is approximated by a/az. In

effect this is a comparison between the full model and the coherent .

component itself and the two obvious shortcomings are that the latter . ,

does not incorporate any spectral information, nor does it apply to

other than low frequency cases. The Slope-Operator model is presented

using both the Fraunhofer and Fresnel phase approximation. The Fresnel

case is more complicated and presents no more information than the 0

Fraunhofer model in the farfield. In principle the Fraunhofer case

will diverge in the specular direction if no source beampattern is

used. This is because the integral over the ensonified area is assumed

to be the same as the integral between minus and plus infinity, since %%

the integrand with a Gaussian beampattern restricts significant
.99

contributions to the ensonified area. The Fresnel approximation

presented in this study is derived using the binomial expansion. This

alternative is admittedly poor when compared to a power series

expansion in the phase but is considerably easier to implement.

Lastly, the MSP and TPM are effectively merged in the Composite-

Roughness Model. It is rather easy to implement and offers good

results when the surface spectra can be divided into two distinct -

regimes. However, the model is very sensitive to the choice of

spectral partitioning when it is not apparent where the division in the

spectrum is to be made.

%

Expressions for the covariance and intensity were developed. The Ple

coherent component of the intensity is shown to be a good estimator of

. q27
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surface roughness. Spectral content turns up in the incoherent -

component. The covariance of the field is shown to be analogous to the

mutual covariance quantity whereas the intensity is the same as the

self-covariance.

No attempt was made to conduct an in-depth coherence study, but

several examples were provided so that the models can be compared and -

some qualitative features of coherence calculations can be highlighted.

The coherence is shown to drop with increasing beamwidth and frequency.

This feature is useful in interferometric partial coherence studies.

When the Fraunhofer phase approximation is used, the coherence phase is 0

determined solely by the wavenumber times the difference in magnitude .4'"

of the distances between the surface and the two receivers. The point •$

was made that the horizontal coherence tends to vary very little

compared to the vertical coherence because the random processes

considered are a function of vertical coordinates. Coherence is a good

estimator of source localization and it provides considerable spectral •

information. '-.'.,

Although partial coherence is a well-developed theory in the field S

of optics, in acoustics, a comprehensive theory encompassing the 4

fundamental notions is yet to be formulated. The acoustics community

would undoubtedly welcome a monograph in this area. •
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In optical coherence studies, rapidity of phase fluctuations is -.

the primary challenge, whereas in acoustics the difficulty is that near

perfect shadows are unattainable in an important frequency range. a.

These aspects, along with the distinctly different near-field

characteristics and the polarization, must be dealt with differently in

acoustics.

Reliable experimental data on coherence measurements involving

Gaussian surfaces as well as the ocean surface is needed in order to

make an assessment of the validity of the several models presented in

this study. Exact numerical evaluation of equations (2.1) and (2.2) 0

would permit an analysis of the validity and interaction of the many ".-
• .:,..

assumptions and approximations made in this study, as well as a means

of comparing the two equations for similarity in results. A difficult 0

but necessary project is the measurement of the ocean spectra under
-"-a.

more controlled and consistent conditions. The tabulation of the

surface autocorrelation could be performed as once did Fortuin and

deBoer (12), Latta (45), and Mellen (46) with the outdated Roll-Fisher
loa

and Neumann-Pierson spectra. a"

Time dependence can be introduced in the problem, so that a model 0

for spatial and temporal covariance can be formulated. Time coherence

would enable the determination of finite spectral width of the

scattering surface and surface movement, in addition to surface .

autocorrelation "movement." The directional spectrum and full

0 geometric implementation would be most useful in this case.

011
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A logical and extremely useful continuance of this work would

be: (I) the quantitative analysis of the sensitivity of the models .

to field

fluctuations, (2) the importance of higher-order multiple scatter

terms to coherence calculations, (3) the contribution of multiple

scatter to field flucations, and (4) the development of covariant .

expressions that are valid in the near-field. •

Derivation of expressions for higher-order moments (which are .. %.

less sensitive to inhomogeneities in the media) is required for a

theory of partial coherence, particularly if the general theory 0

for Gaussian as well as non-Gaussian surfaces is formulated.

Though higher order moments do not provide any new information if

the surface is Gaussian, they do so, however, for non-Gaussian .e

surfaces. The theory underlying non-Gaussian surface statistics F* , ,

can be found in Beckmann's paper (38). We-

-A
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APPENDIX

THE PIERSON-STACY SPECTRUM

The non-directional ocean wavenumber elevation spectrum is

included here for convenience. This summary has been extracted word •

for word from a summary prepared by McCammon (48) on the subject of the

Pierson-Stacy (42) Reports.

This wavenumber elevation spectra is non-directional with the 9

units of cm3 and is related to the RMS waveheight byco
<0r2> -fW(K)dK. (A.1)

The spectral equations for each region are

(1) Pierson Moskowitz region

W1 (K) - a~ exp[-B/K2 ]/(2K'). (A.2)

(2) Stacy region

WS(K) - (2.04xlO +l.O2xlO 4U*)exp[-79.2K / I/K" I (A.3)

(3) Kitaigorodskii region I
W 2 ( K ) - a / ( 2 0K ) . ( A .4 )

d. (4) Leykin-Rosenberg range

W3 (K) - W 4 (K3 )(K/K 3 )q. (A.5)

I
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V.

(5) Mitsuyasu-Honda range
. .~ ..e

W4 ( K ) - 0.875(2w) P - 1 (+3rK2)/(g( p - 1)/2 (K+K 3 r)(p+l)/2 0 % 0%

(A.6)P

(6) Cox viscous cutoff range
'-'V,

-3W5 (K) - 7.04xi0 U*/K 9 . (A.7)

where - 8.Ixl0-3

- 0.74 g2/U4

8 19

q 51.71/U* 2  
-

p - 5.0 - log [U*I,

- 7.58x10-
2

g 980. -2

-.- 4

These regions are linked together in K space as

WI (K) 0<I(<I i  :
"wv-

WS(K) Ki<K<K
max{U. > 35.8 else use

W1 (K) ,K

W(K) lK2
W(K)- max( U. > 75.76 else use.2 (K) W2 (K)

W3 (K) K2<K<K3 " -.

min 4(K) K3 >K "
Ws (K) ,,,
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where
'A?

K i  0. 7 0 2 g/U1 2,

K1  51.71/U*2,

K2 0.359,

K3  0.942,

U - wind speed at 19.5 m,ig

U. - friction velocity obtained from the equations,

U z - U* ln(z.zo)/0.4,

zo - 0.684/U. + 4.28x0 5 U* - 0.0443. %

The units of these equations are CGS, W(K) is given in cm3, K in

cm 1 , U in cm/sec. LL

%a- a.,
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